Christopher J Ormandy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3594968/publications.pdf

Version: 2024-02-01

101 papers 6,540 citations

41323 49 h-index 78 g-index

116 all docs

116 does citations

times ranked

116

8927 citing authors

#	Article	IF	CITATIONS
1	Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature, 2010, 468, 98-102.	13.7	507
2	Prolactin Controls Mammary Gland Development via Direct and Indirect Mechanisms. Developmental Biology, 1999, 210, 96-106.	0.9	284
3	Cyclin D1, EMS1 and $11q13$ Amplification in Breast Cancer. Breast Cancer Research and Treatment, 2003, 78, 323-335.	1.1	243
4	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	5.8	208
5	The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes and Development, 2008, 22, 581-586.	2.7	205
6	Osteoblasts Are a New Target for Prolactin: Analysis of Bone Formation in Prolactin Receptor Knockout Mice**This work was supported in part by grants from Hoechst Marion Roussel, Inc Endocrinology, 1999, 140, 96-105.	1.4	172
7	Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochemical and Biophysical Research Communications, 2005, 331, 1120-1126.	1.0	162
8	Y4 receptor knockout rescues fertility in ob/ob mice. Genes and Development, 2002, 16, 1077-1088.	2.7	159
9	Hedgehog Overexpression Is Associated with Stromal Interactions and Predicts for Poor Outcome in Breast Cancer. Cancer Research, 2011, 71, 4002-4014.	0.4	149
10	Socs2 and Elf5 Mediate Prolactin-Induced Mammary Gland Development. Molecular Endocrinology, 2006, 20, 1177-1187.	3.7	138
11	Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO Journal, 2005, 24, 635-644.	3.5	129
12	Prolactin Regulation of Mammary Gland Development. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 13-28.	1.0	129
13	Key stages in mammary gland development - The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Research, 2006, 8, 207.	2.2	123
14	Rescue of Preimplantatory Egg Development and Embryo Implantation in Prolactin Receptor-Deficient Mice after Progesterone Administration. Endocrinology, 2000, 141, 2691-2697.	1.4	121
15	Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO Journal, 2004, 23, 582-593.	3.5	116
16	Mammary gland development in prolactin receptor knockout mice. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 355-364.	1.0	113
17	Prostate Hyperplasia in a Transgenic Mouse with Prostate-Specific Expression of Prolactin. Endocrinology, 2003, 144, 2269-2278.	1.4	106
18	Disruption of Steroid and Prolactin Receptor Patterning in the Mammary Gland Correlates with a Block in Lobuloalveolar Development. Molecular Endocrinology, 2002, 16, 2675-2691.	3.7	105

#	Article	IF	Citations
19	The role of prolactin and growth hormone in mammary gland development. Molecular and Cellular Endocrinology, 2002, 197, 127-131.	1.6	102
20	HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse. PLoS Genetics, 2015, 11, e1005620.	1.5	95
21	Coexpression and Cross-Regulation of the Prolactin Receptor and Sex Steroid Hormone Receptors in Breast Cancer $<$ sup $>$ 1 $<$ 1sup $>$ 1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3692-3699.	1.8	93
22	SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes and Development, 2001, 15, 1631-1636.	2.7	93
23	Investigation of the Transcriptional Changes Underlying Functional Defects in the Mammary Glands of Prolactin Receptor Knockout Mice. Endocrine Reviews, 2003, 58, 297-323.	7.1	92
24	Local Insulin-Like Growth Factor-II Mediates Prolactin-Induced Mammary Gland Development. Molecular Endocrinology, 2003, 17, 460-471.	3.7	91
25	Meta-Analysis and Gene Set Enrichment Relative to ER Status Reveal Elevated Activity of MYC and E2F in the "Basal―Breast Cancer Subgroup. PLoS ONE, 2009, 4, e4710.	1.1	88
26	Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells. Development (Cambridge), 2013, 140, 1397-1401.	1.2	86
27	Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer. PLoS ONE, 2008, 3, e2987.	1.1	85
28	Transcriptional Changes Underlying the Secretory Activation Phase of Mammary Gland Development. Molecular Endocrinology, 2005, 19, 1868-1883.	3.7	83
29	A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts. Cell Reports, 2017, 21, 274-288.	2.9	83
30	Prolactin and the prolactin receptor: new targets of an old hormone. Annals of Medicine, 2004, 36, 414-425.	1.5	80
31	Insulin, a key regulator of hormone responsive milk protein synthesis during lactogenesis in murine mammary explants. Functional and Integrative Genomics, 2010, 10, 87-95.	1.4	80
32	ELF5 Suppresses Estrogen Sensitivity and Underpins the Acquisition of Antiestrogen Resistance in Luminal Breast Cancer. PLoS Biology, 2012, 10, e1001461.	2.6	74
33	Edd , the Murine Hyperplastic Disc Gene, Is Essential for Yolk Sac Vascularization and Chorioallantoic Fusion. Molecular and Cellular Biology, 2004, 24, 7225-7234.	1.1	73
34	From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. Genetic Analysis, Techniques and Applications, 1999, 15, 189-201.	1.5	72
35	RAB-Like 2 Has an Essential Role in Male Fertility, Sperm Intra-Flagellar Transport, and Tail Assembly. PLoS Genetics, 2012, 8, e1002969.	1.5	72
36	c-Myc overexpression and endocrine resistance in breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 147-155.	1.2	71

#	Article	IF	Citations
37	RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility. PLoS Genetics, 2013, 9, e1003628.	1.5	68
38	The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocrine-Related Cancer, 2017, 24, R123-R144.	1.6	64
39	Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Developmental Dynamics, 2002, 225, 100-105.	0.8	60
40	Runx2 Is a Novel Regulator of Mammary Epithelial Cell Fate in Development and Breast Cancer. Cancer Research, 2014, 74, 5277-5286.	0.4	60
41	MCL-1 inhibition provides a new way to suppress breast cancer metastasis and increase sensitivity to dasatinib. Breast Cancer Research, 2016, 18, 125.	2.2	60
42	LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male Fertility. PLoS Genetics, 2015, 11, e1005090.	1.5	59
43	ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells. PLoS Biology, 2015, 13, e1002330.	2.6	59
44	Prolactin Regulates Mammary Epithelial Cell Proliferation Via Autocrine/Paracrine Mechanism. Endocrine, 2003, 20, 111-114.	2.2	54
45	Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue. Cell Reports, 2016, 14, 152-167.	2.9	54
46	Mouse Prolactin Receptor Gene: Genomic Organization Reveals Alternative Promoter Usage and Generation of Isoforms via Alternative 3′-Exon Splicing. DNA and Cell Biology, 1998, 17, 761-770.	0.9	53
47	Prostate Development and Carcinogenesis in Prolactin Receptor Knockout Mice. Endocrinology, 2003, 144, 3196-3205.	1.4	53
48	KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 383-393.	1.9	53
49	High Notch1 protein expression is an early event in breast cancer development and is associated with the HERâ€2 molecular subtype. Histopathology, 2010, 56, 286-296.	1.6	51
50	The mammary cellular hierarchy and breast cancer. Cellular and Molecular Life Sciences, 2014, 71, 4301-4324.	2.4	49
51	ID4 controls mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nature Communications, 2015, 6, 6548.	5.8	49
52	Interplay between progesterone and prolactin in mammary development and implications for breast cancer. Molecular and Cellular Endocrinology, 2012, 357, 101-107.	1.6	48
53	Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology. Frontiers in Immunology, 2018, 9, 2582.	2.2	47
54	BCL-2 Hypermethylation Is a Potential Biomarker of Sensitivity to Antimitotic Chemotherapy in Endocrine-Resistant Breast Cancer. Molecular Cancer Therapeutics, 2013, 12, 1874-1885.	1.9	45

#	Article	IF	Citations
55	Andy's Algorithms: new automated digital image analysis pipelines for FIJI. Scientific Reports, 2017, 7, 15717.	1.6	45
56	Mechanisms of prolactin receptor regulation in mammary gland. Molecular and Cellular Endocrinology, 1993, 91, C1-C6.	1.6	41
57	Lineage Specific Methylation of the <i>Elf5</i> Promoter in Mammary Epithelial Cells. Stem Cells, 2011, 29, 1611-1619.	1.4	39
58	Prolactin: A Hormone at the Crossroads of Neuroimmunoendocrinology. Annals of the New York Academy of Sciences, 1998, 840, 498-509.	1.8	38
59	ELF5 isoform expression is tissue-specific and significantly altered in cancer. Breast Cancer Research, 2016, 18, 4.	2.2	37
60	Differential Expression of Oestrogen Regulated Genes in Breast Cancer. Acta Oncológica, 1995, 34, 641-646.	0.8	36
61	PIKE-A is required for prolactin-mediated STAT5a activation in mammary gland development. EMBO Journal, 2010, 29, 956-968.	3.5	31
62	Elf5, hormones and cell fate. Trends in Endocrinology and Metabolism, 2012, 23, 292-298.	3.1	31
63	Grb10 regulates the development of fiber number in skeletal muscle. FASEB Journal, 2012, 26, 3658-3669.	0.2	31
64	Rescue of Preimplantatory Egg Development and Embryo Implantation in Prolactin Receptor-Deficient Mice after Progesterone Administration. , 0, .		29
65	Androgen regulation of prolactin-receptor gene expression in MCF-7 and MDA-MB-453 human breast cancer cells. International Journal of Cancer, 1992, 50, 777-782.	2.3	27
66	Static droplet array for culturing single live adherent cells in an isolated chemical microenvironment. Lab on A Chip, 2018, 18, 2156-2166.	3.1	27
67	Role of the CDK Inhibitor p27 (Kip1) in Mammary Development and Carcinogenesis: Insights from Knockout Mice. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 55-66.	1.0	24
68	Mammary Gland Development and the Prolactin Receptor., 2000, 480, 85-92.		22
69	Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion. Cell Adhesion and Migration, 2018, 12, 513-523.	1.1	22
70	Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget, 2014, 5, 8651-8664.	0.8	22
71	A mutation in the viral sensor 2'-5'-oligoadenylate synthetase 2 causes failure of lactation. PLoS Genetics, 2017, 13, e1007072.	1.5	21
72	The Effect of Progestins on Prolactin Receptor Gene Transcription in Human Breast Cancer Cells. DNA and Cell Biology, 1992, 11, 721-726.	0.9	20

#	Article	IF	Citations
7 3	The Cyclin-Dependent Kinase Inhibitor p27 (Kip1) Regulates Both DNA Synthesis and Apoptosis in Mammary Epithelium But Is Not Required for Its Functional Development during Pregnancy. Molecular Endocrinology, 2003, 17, 2436-2447.	3.7	19
74	The Proliferative and Apoptotic Landscape of Basal-like Breast Cancer. International Journal of Molecular Sciences, 2019, 20, 667.	1.8	19
75	The Neuropeptide Galanin Augments Lobuloalveolar Development. Journal of Biological Chemistry, 2003, 278, 29145-29152.	1.6	18
76	Transcriptome analysis identifies pathways associated with enhanced maternal performance in QSi5 mice. BMC Genomics, 2008, 9, 197.	1.2	18
77	Id Proteins Promote a Cancer Stem Cell Phenotype in Mouse Models of Triple Negative Breast Cancer via Negative Regulation of Robo1. Frontiers in Cell and Developmental Biology, 2020, 8, 552.	1.8	18
78	Galanin Mediates the Pathogenesis of Cerulein-Induced Acute Pancreatitis in the Mouse. Pancreas, 2010, 39, 182-187.	0.5	17
79	MCL-1 antagonism enhances the anti-invasive effects of dasatinib in pancreatic adenocarcinoma. Oncogene, 2020, 39, 1821-1829.	2.6	17
80	ELF5 modulates the estrogen receptor cistrome in breast cancer. PLoS Genetics, 2020, 16, e1008531.	1.5	17
81	Inverse regulation of oestrogen receptor and epidermal growth factor receptor gene expression in MCF-7 breast cancer cells treated with phorbol ester. Journal of Steroid Biochemistry and Molecular Biology, 1996, 58, 267-275.	1.2	16
82	Gata-3 and mammary cell fate. Breast Cancer Research, 2007, 9, 302.	2.2	14
83	Profiling the tyrosine phosphoproteome of different mouse mammary tumour models reveals distinct, model-specific signalling networks and conserved oncogenic pathways. Breast Cancer Research, 2014, 16, 437.	2.2	13
84	Solubilization and characterization of a lactogenic receptor from human placental chorion membranes. Journal of Cellular Biochemistry, 1990, 43, 1-15.	1.2	12
85	Coordinate regulation of oestrogen and prolactin receptor expression by sodium butyrate in human breast cancer cells. Biochemical and Biophysical Research Communications, 1992, 182, 740-745.	1.0	12
86	Receptor Domains Involved in Signal Transduction of Prolactin and Growth Hormone. Experimental Biology and Medicine, 1994, 206, 280-283.	1.1	12
87	A Missense Mutation in the Transcription Factor ETV5 Leads to Sterility, Increased Embryonic and Perinatal Death, Postnatal Growth Restriction, Renal Asymmetry and Polydactyly in the Mouse. PLoS ONE, 2013, 8, e77311.	1.1	11
88	Identification of Downstream Targets of Estrogen and c-myc in Breast Cancer Cells. Advances in Experimental Medicine and Biology, 2008, 617, 445-451.	0.8	11
89	NSG-Pro mouse model for uncovering resistance mechanisms and unique vulnerabilities in human luminal breast cancers. Science Advances, 2021, 7, eabc8145.	4.7	10
90	Regulation of prolactin receptor expression by the tumour promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate in human breast cancer cells. Journal of Cellular Biochemistry, 1993, 52, 47-56.	1.2	8

#	Article	IF	CITATIONS
91	Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer. Breast Cancer Research, 2020, 22, 63.	2.2	8
92	Mammary Gland Development. Growth Hormone, 2001, , 219-232.	0.2	7
93	ELF5, normal mammary development and the heterogeneous phenotypes of breast cancer. Breast Cancer Management, 2013, 2, 489-498.	0.2	6
94	Inhibitor of Differentiation 4 (ID4) represses mammary myoepithelial differentiation via inhibition of HEB. IScience, 2021, 24, 102072.	1.9	6
95	Activation of the viral sensor oligoadenylate synthetase 2 (Oas2) prevents pregnancy-driven mammary cancer metastases. Breast Cancer Research, 2022, 24, 31.	2.2	6
96	ALTEN: A Highâ€Fidelity Primary Tissueâ€Engineering Platform to Assess Cellular Responses Ex Vivo. Advanced Science, 0, , 2103332.	5.6	3
97	Introduction: Genomic Telescopes. Journal of Mammary Gland Biology and Neoplasia, 2003, 8, 255-256.	1.0	O
98	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		0
99	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		0
100	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		0
101	ELF5 modulates the estrogen receptor cistrome in breast cancer. , 2020, 16, e1008531.		O