
Andreas Petzold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3594671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 51.	0.8	85
2	Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 239.	0.8	57
3	Dust mobilization and transport in the northern Sahara during SAMUM 2006 – a meteorological overview. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 12.	0.8	79
4	Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 118.	0.8	156
5	Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 32.	0.8	321
6	Regional Saharan dust modelling during the SAMUM 2006 campaign. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 307.	0.8	48
7	Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 96.	0.8	175
8	Properties of dust aerosol particles transported to Portugal from the Sahara desert. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 297.	0.8	75
9	Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 131.	0.8	71
10	Mixing of mineral dust with urban pollution aerosol over Dakar (Senegal): impact on dust physico-chemical and radiative properties. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 619.	0.8	48
11	Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 677.	0.8	90
12	Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 497.	0.8	49
13	Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: what have we learned?. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 403.	0.8	187
14	Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region—an overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 589.	0.8	120
15	Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 742.	0.8	22
16	Regional modelling of Saharan dust and biomass-burning smoke: Part 1: Model description and evaluation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 781.	0.8	47
17	Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28452.	0.8	118
18	The first regular measurements of ozone, carbon monoxide and water vapour in the Pacific UTLS by IAGOS. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28385.	0.8	13

#	Article	IF	CITATIONS
19	Instrumentation on commercial aircraft for monitoring the atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and carbon monoxide measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27791.	0.8	61
20	Airborne survey of trace gases and aerosols over the Southern Baltic Sea: from clean marine boundary layer to shipping corridor effect. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1695349.	0.8	7
21	Quality assessment of MOZAIC and IAGOS capacitive hygrometers: insights from airborne field studies. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28320.	0.8	21
22	The IAGOS-CORE aerosol package: instrument design, operation and performance for continuous measurement aboard in-service aircraft. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28339.	0.8	21
23	The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions. Atmospheric Chemistry and Physics, 2022, 22, 2975-2997.	1.9	15
24	Relative errors in derived multi-wavelength intensive aerosol optical properties using cavity attenuated phase shift single-scattering albedo monitors, a nephelometer, and tricolour absorption photometer measurements. Atmospheric Measurement Techniques, 2022, 15, 3279-3296.	1.2	3
25	The global impacts of COVID-19 lockdowns on urban air pollution. Elementa, 2021, 9, .	1.1	94
26	Laboratory validation of a compact single-scattering albedo (SSA) monitor. Atmospheric Measurement Techniques, 2021, 14, 1635-1653.	1.2	4
27	The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Clobal Observing System (IAGOS) at Frankfurt. Atmospheric Chemistry and Physics, 2021, 21, 16237-16256.	1.9	12
28	Characterization of the Miniaturized Inverted Flame Burner as a Combustion Source to Generate a Nanoparticle Calibration Aerosol. Emission Control Science and Technology, 2020, 6, 37-46.	0.8	9
29	Towards Operational Research Infrastructures with FAIR Data and Services. Lecture Notes in Computer Science, 2020, , 360-372.	1.0	2
30	lce-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint. Atmospheric Chemistry and Physics, 2020, 20, 8157-8179.	1.9	19
31	ENVRI-FAIR - Interoperable Environmental FAIR Data and Services for Society, Innovation and Research. , 2019, , .		17
32	The IAGOS NO _{<i>x</i>} instrument – design, operation and first results from deployment aboard passenger aircraft. Atmospheric Measurement Techniques, 2018, 11, 3737-3757.	1.2	14
33	ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO. Bulletin of the American Meteorological Society, 2017, 98, 271-288.	1.7	107
34	Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in situ observations. Faraday Discussions, 2017, 200, 229-249.	1.6	16
35	Airborne and laboratory studies of an IAGOS instrumentation package containing a modified CAPS particle extinction monitor. Aerosol Science and Technology, 2017, 51, 1240-1253.	1.5	6
36	Atmospheric chemistry and the biosphere: general discussion. Faraday Discussions, 2017, 200, 195-228.	1.6	1

#	Article	IF	CITATIONS
37	Atmospheric chemistry processes: general discussion. Faraday Discussions, 2017, 200, 353-378.	1.6	Ο
38	New tools for atmospheric chemistry: general discussion. Faraday Discussions, 2017, 200, 663-691.	1.6	0
39	In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2Âdecades of IAGOS long-term routine observation. Atmospheric Chemistry and Physics, 2017, 17, 12495-12508.	1.9	12
40	Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft. Atmospheric Measurement Techniques, 2016, 9, 5135-5162.	1.2	39
41	The 2014 MOZAIC–IAGOS 20th Anniversary Scientific Symposium on Atmospheric Composition Observations by Commercial Aircraft. Tellus, Series B: Chemical and Physical Meteorology, 2015, 67, 29777.	0.8	Ο
42	Assessing Optical Properties and Refractive Index of Combustion Aerosol Particles Through Combined Experimental and Modeling Studies. Aerosol Science and Technology, 2015, 49, 340-350.	1.5	47
43	Evaluation of the MOZAIC Capacitive Hygrometer during the airborne field study CIRRUS-III. Atmospheric Measurement Techniques, 2015, 8, 1233-1243.	1.2	18
44	Modeling the evolution of aerosol particles in a ship plume using PartMC-MOSAIC. Atmospheric Chemistry and Physics, 2014, 14, 5327-5347.	1.9	29
45	Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions. Atmospheric Chemistry and Physics, 2014, 14, 2591-2603.	1.9	59
46	Technical Note: Reanalysis of upper troposphere humidity data from the MOZAIC programme for the period 1994 to 2009. Atmospheric Chemistry and Physics, 2014, 14, 13241-13255.	1.9	15
47	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	1.9	148
48	Aerosol classification by airborne high spectral resolution lidar observations. Atmospheric Chemistry and Physics, 2013, 13, 2487-2505.	1.9	209
49	Global Civil Aviation Black Carbon Emissions. Environmental Science & Technology, 2013, 47, 130823150610008.	4.6	43
50	Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP) at high black carbon mass concentration levels. Atmospheric Measurement Techniques, 2013, 6, 81-90.	1.2	77
51	Aircraft type influence on contrail properties. Atmospheric Chemistry and Physics, 2013, 13, 11965-11984.	1.9	54
52	Recommendations for reporting "black carbon" measurements. Atmospheric Chemistry and Physics, 2013, 13, 8365-8379.	1.9	808
53	Characterization of long-term and seasonal variations of black carbon (BC) concentrations at Neumayer, Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 1579-1590.	1.9	53
54	Intercomparison of a Cavity Attenuated Phase Shift-based extinction monitor (CAPS PMex) with an integrating nephelometer and a filter-based absorption monitor. Atmospheric Measurement Techniques, 2013, 6, 1141-1151.	1.2	41

#	Article	lF	CITATIONS
55	Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign. Atmospheric Measurement Techniques, 2012, 5, 1147-1163.	1.2	115
56	Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles. Atmospheric Measurement Techniques, 2012, 5, 3099-3107.	1.2	43
57	Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. Atmospheric Measurement Techniques, 2012, 5, 1869-1887.	1.2	197
58	Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe. Atmospheric Chemistry and Physics, 2012, 12, 11533-11554.	1.9	13
59	The evolution of microphysical and optical properties of an A380 contrail in the vortex phase. Atmospheric Chemistry and Physics, 2012, 12, 6629-6643.	1.9	42
60	Characterizing Particulate Matter Emissions From Aircraft Engines. , 2012, , .		0
61	On the visibility of airborne volcanic ash and mineral dust from the pilot's perspective in flight. Physics and Chemistry of the Earth, 2012, 45-46, 87-102.	1.2	56
62	In Situ Measurement Methods for Atmospheric Aerosol Particles and Cloud Elements. Research Topics in Aerospace, 2012, , 297-315.	0.6	2
63	Aerosols in the Atmosphere. Research Topics in Aerospace, 2012, , 37-53.	0.6	11
64	Cloud-Aerosol-Radiation Interaction: Towards the EarthCARE Satellite Mission. Research Topics in Aerospace, 2012, , 829-842.	0.6	1
65	Aircraft Emissions at Cruise and Plume Processes. Research Topics in Aerospace, 2012, , 675-692.	0.6	Ο
66	Evaluation of Methods for Measuring Particulate Matter Emissions from Gas Turbines. Environmental Science & Technology, 2011, 45, 3562-3568.	4.6	56
67	Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects. Environmental Science & Technology, 2011, 45, 10394-10400.	4.6	81
68	Climate Impact of Biofuels in Shipping: Global Model Studies of the Aerosol Indirect Effect. Environmental Science & Technology, 2011, 45, 3519-3525.	4.6	54
69	Extinction and optical depth of contrails. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	70
70	Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology. Atmospheric Research, 2011, 102, 10-29.	1.8	139
71	Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment. Applied Optics, 2011, 50, 2069.	2.1	22
72	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278

#	Article	IF	CITATIONS
73	Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign. Atmospheric Chemistry and Physics, 2011, 11, 1065-1082.	1.9	79
74	Thin and subvisible cirrus and contrails in a subsaturated environment. Atmospheric Chemistry and Physics, 2011, 11, 5853-5865.	1.9	39
75	Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmospheric Chemistry and Physics, 2011, 11, 8231-8256.	1.9	367
76	MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state. Geoscientific Model Development, 2011, 4, 325-355.	1.3	61
77	Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmospheric Measurement Techniques, 2011, 4, 245-268.	1.2	284
78	Effective Radius of Ice Particles in Cirrus and Contrails. Journals of the Atmospheric Sciences, 2011, 68, 300-321.	0.6	67
79	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	1.9	144
80	Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 1885-1898.	1.9	89
81	Atmospheric sub-3 nm particles at high altitudes. Atmospheric Chemistry and Physics, 2010, 10, 437-451.	1.9	95
82	Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland. Atmospheric Chemistry and Physics, 2010, 10, 7389-7407.	1.9	109
83	In-situ observations of young contrails – overview and selected results from the CONCERT campaign. Atmospheric Chemistry and Physics, 2010, 10, 9039-9056.	1.9	93
84	Transport impacts on atmosphere and climate: Aviation. Atmospheric Environment, 2010, 44, 4678-4734.	1.9	565
85	Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmospheric Measurement Techniques, 2010, 3, 457-474.	1.2	409
86	Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shapeâ€independent particle properties. Journal of Geophysical Research, 2010, 115, .	3.3	49
87	Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shapeâ€dependent particle properties. Journal of Geophysical Research, 2010, 115, .	3.3	38
88	Physical Properties, Chemical Composition, and Cloud Forming Potential of Particulate Emissions from a Marine Diesel Engine at Various Load Conditions. Environmental Science & Technology, 2010, 44, 3800-3805.	4.6	92
89	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	1.9	714
90	State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, .	0.8	4

#	Article	IF	CITATIONS
91	The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. Science of the Total Environment, 2008, 391, 252-261.	3.9	115
92	Intercomparison of Measurement Techniques for Black or Elemental Carbon Under Urban Background Conditions in Wintertime: Influence of Biomass Combustion. Environmental Science & Technology, 2008, 42, 884-889.	4.6	104
93	Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer. Atmospheric Chemistry and Physics, 2008, 8, 2387-2403.	1.9	182
94	Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2008, 8, 407-423.	1.9	144
95	An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles. Aerosol Science and Technology, 2007, 41, 295-314.	1.5	276
96	10 The ABC-Pyramid: a scientific laboratory at 5079 m a.s.l. for the study of atmospheric composition change and climate. Developments in Earth Surface Processes, 2007, 10, 67-75.	2.8	1
97	Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004. Atmospheric Chemistry and Physics, 2007, 7, 5105-5127.	1.9	61
98	Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2007, 7, 1797-1807.	1.9	123
99	Aircraft measurements over Europe of an air pollution plume from Southeast Asia – aerosol and chemical characterization. Atmospheric Chemistry and Physics, 2007, 7, 913-937.	1.9	67
100	Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. Journal of Geophysical Research, 2007, 112, .	3.3	182
101	Intercomparison of Thermal and Optical Measurement Methods for Elemental Carbon and Black Carbon at an Urban Location. Environmental Science & Technology, 2006, 40, 6377-6383.	4.6	126
102	Measurement of ultrafine aerosol size distributions by a combination of diffusion screen separators and condensation particle counters. Journal of Aerosol Science, 2006, 37, 577-597.	1.8	40
103	Aircraft-based operation of an aerosol mass spectrometer: Measurements of tropospheric aerosol composition. Journal of Aerosol Science, 2006, 37, 839-857.	1.8	30
104	Microphysical and optical properties of midlatitude cirrus clouds observed in the southern hemisphere during INCA. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 2719-2748.	1.0	54
105	Assessment of Cirrus Cloud Optical and Microphysical Data Reliability by Applying Statistical Procedures. Journal of Atmospheric and Oceanic Technology, 2005, 22, 409-420.	0.5	19
106	Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption. Aerosol Science and Technology, 2005, 39, 40-51.	1.5	258
107	Particle emissions from aircraft engines a survey of the European project PartEmis. Meteorologische Zeitschrift, 2005, 14, 465-476.	0.5	38
108	On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles. Atmospheric Chemistry and Physics, 2005, 5, 3187-3203.	1.9	77

#	Article	IF	CITATIONS
109	The aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 2005, 5, 1125-1156.	1.9	990
110	Measurement of Wavelength-Resolved Light Absorption by Aerosols Utilizing a UV-VIS Extinction Cell. Aerosol Science and Technology, 2005, 39, 249-260.	1.5	89
111	Inversion of data containing information on the aerosol particle size distribution using multiple instruments. Journal of Aerosol Science, 2005, 36, 1353-1372.	1.8	42
112	The Reno Aerosol Optics Study: An Evaluation of Aerosol Absorption Measurement Methods. Aerosol Science and Technology, 2005, 39, 1-16.	1.5	215
113	PARTICLE EMISSIONS FROM SHIP ENGINES. Journal of Aerosol Science, 2004, 35, S1095-S1096.	1.8	24
114	VERTICAL DISTRIBUTION OF AEROSOL PROPERTIES AT MIDLATITUDES – OBSERVATIONS AND MODEL STUDIES Journal of Aerosol Science, 2004, 35, S1253-S1254.	[•] 1.8	0
115	RESPONSE OF FILTER-BASED METHODS FOR MEASURING LIGHT ABSORPTION TO COMBUSTION AEROSOLS FROM DIFFERENT SOURCES. Journal of Aerosol Science, 2004, 35, S775-S776.	1.8	1
116	Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines (PartEmis): an overview. Aerospace Science and Technology, 2004, 8, 131-143.	2.5	30
117	Uptake of reactive nitrogen on cirrus cloud particles during INCA. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	44
118	Properties of jet engine combustion particles during the PartEmis experiment: Particle size spectra (d) Tj ETQq0 0	0.rgBT /Ov 1.9	verlock 10 T 4
119	Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment. Journal of Geophysical Research, 2004, 109, .	3.3	98
120	Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon. Journal of Aerosol Science, 2004, 35, 421-441.	1.8	542
121	PARTICLES FROM AIRCRAFT EXHAUST: IN-SITU MASS SPECTROMETRIC ANALYSIS. Journal of Aerosol Science, 2004, 35, S1227-S1228.	1.8	0
122	Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses. Atmospheric Chemistry and Physics, 2004, 4, 1343-1353.	1.9	10
123	Aerosol-cirrus interactions: a number based phenomenon at all?. Atmospheric Chemistry and Physics, 2004, 4, 293-305.	1.9	24
124	Volatile particles formation during PartEmis: a modelling study. Atmospheric Chemistry and Physics, 2004, 4, 439-447.	1.9	12
125	Growth of upper tropospheric aerosols due to uptake of HNO ₃ . Atmospheric Chemistry and Physics, 2004, 4, 549-556.	1.9	3
126	Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	110

#	ARTICLE	IF	CITATIONS
127	Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions. Geophysical Research Letters, 2003, 30, .	1.5	57
128	Properties of jet engine combustion particles during the PartEmis experiment: Microphysics and Chemistry. Geophysical Research Letters, 2003, 30, .	1.5	37
129	Properties of jet engine combustion particles during the PartEmis experiment. Hygroscopic growth at supersaturated conditions. Geophysical Research Letters, 2003, 30, .	1.5	37
130	Correction to "Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomassâ€burning aerosol and its radiative forcing―by M. Fiebig, A. Petzold, U. Wandinger, M. Wendisch, C. Kiemle, A. Stifter, M. Ebert, T. Rother, and U. Leiterer. Journal of Geophysical Research, 2003, 108, .	3.3	0
131	In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses. Atmospheric Chemistry and Physics, 2003, 3, 1037-1049.	1.9	47
132	Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture. Atmospheric Chemistry and Physics, 2003, 3, 881-891.	1.9	65
133	Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experiment. Atmospheric Chemistry and Physics, 2003, 3, 1807-1816.	1.9	74
134	Diagnosing black carbon trends in large urban areas using carbon monoxide measurements. Journal of Geophysical Research, 2002, 107, ICC 4-1-ICC 4-9.	3.3	70
135	Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7. Journal of Geophysical Research, 2002, 107, AAC 2-1.	3.3	108
136	Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98). Journal of Geophysical Research, 2002, 107, LAC 10-1-LAC 10-18.	3.3	61
137	Airborne Lidar and in-situ Aerosol Observations of an Elevated Layer, Leeward of the European Alps and Apennines. Geophysical Research Letters, 2002, 29, 33-1-33-4.	1.5	30
138	Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing. Journal of Geophysical Research, 2002, 107, LAC 12-1-LAC 12-15.	3.3	85
139	Aerosol states in the free troposphere at northern midlatitudes. Journal of Geophysical Research, 2002, 107, LAC 8-1-LAC 8-8.	3.3	59
140	Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment. Journal of Geophysical Research, 2002, 107, ACH 5-1-ACH 5-24.	3.3	77
141	Aerosol-radiation interaction in the cloudless atmosphere during LACE 98 1. Measured and calculated broadband solar and spectral surface insolations. Journal of Geophysical Research, 2002, 107, LAC 6-1-LAC 6-20.	3.3	18
142	Aerosol-radiation interaction in the cloudless atmosphere during LACE 98 2. Aerosol-induced solar irradiance changes determined from airborne pyranometer measurements and calculations. Journal of Geophysical Research, 2002, 107, LAC 12-1-LAC 12-15.	3.3	12
143	Quantitative measurement of the microphysical and optical properties of cirrus clouds with four different in situ probes: Evidence of small ice crystals. Geophysical Research Letters, 2002, 29, XXX-XXX.	1.5	75
144	Aircraft engine exhaust measurement. Air & Space Europe, 2001, 3, 92-95.	0.0	0

9

#	Article	IF	CITATIONS
145	THE CONDENSATION PARTICLE SIZE ANALYZER: A NEW INSTRUMENT FOR THE MEASUREMENT OF ULTRAFINE AEROSOL SIZE DISTRIBUTIONS. Journal of Aerosol Science, 2001, 32, 381-382.	1.8	15
146	AN IMPROVED AEROSOL ABSORPTION PHOTOMETER FOR THE DETERMINATION OF BLACK CARBON IN AMBIENT AEROSOL. Journal of Aerosol Science, 2001, 32, 37-38.	1.8	3
147	On the Transition of Contrails into Cirrus Clouds. Journals of the Atmospheric Sciences, 2000, 57, 464-480.	0.6	153
148	In situ observations of clear-sky aerosol size distributions and variability in the free troposphe and tropopause region over central Europe. Journal of Aerosol Science, 2000, 31, 168-169.	1.8	0
149	Airborne lidar and aerosol studies over the adriatic sea: II. Aerosol volatility studies. Journal of Aerosol Science, 2000, 31, 586-587.	1.8	2
150	Vertical aerosol distribution over polar European regions airborne in situ observations. Journal of Aerosol Science, 2000, 31, 692-693.	1.8	0
151	In situ studies on volatile jet exhaust particle emissions: Impact of fuel sulfur content and environmental conditions on nuclei mode aerosols. Journal of Geophysical Research, 2000, 105, 19941-19954.	3.3	37
152	Ultrafine particle size distributions measured in aircraft exhaust plumes. Journal of Geophysical Research, 2000, 105, 26555-26567.	3.3	122
153	In situ observations of aerosol properties above ice saturation in the polar tropopause region. Journal of Geophysical Research, 2000, 105, 29387-29395.	3.3	7
154	Carbonaceous aerosol in jet engine exhaust: emission characteristics and implications for heterogeneous chemical reactions. Atmospheric Environment, 1999, 33, 2689-2698.	1.9	54
155	Investigation of the specific attenuation cross-section of aerosols deposited on fiber filters with a polar photometer to determine black carbon. Journal of Aerosol Science, 1999, 30, 1153-1163.	1.8	19
156	Condensation nuclei (CN) and ultrafine CN in the free troposphere to 12 km: A case study over the Jungfraujoch High-Alpine Research Station. Geophysical Research Letters, 1999, 26, 2195-2198.	1.5	21
157	In situ observations and model calculations of black carbon emission by aircraft at cruise altitude. Journal of Geophysical Research, 1999, 104, 22171-22181.	3.3	93
158	Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails. Atmospheric Research, 1998, 49, 21-34.	1.8	94
159	Jet Engine Exhaust Aerosol Characterization. Aerosol Science and Technology, 1998, 28, 62-76.	1.5	67
160	Particle composition of a young condensation trail and of upper tropospheric aerosol. Geophysical Research Letters, 1998, 25, 2679-2682.	1.5	23
161	Ultrafine aerosol particles in aircraft plumes: In situ observations. Geophysical Research Letters, 1998, 25, 2789-2792.	1.5	72
162	Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles: 2. Comparison with observations and sensitivity studies. Journal of Geophysical Research, 1998, 103, 17129-17147.	3.3	66

#	Article	IF	CITATIONS
163	Reexamination of Black Carbon Mass Emission Indices of a Jet Engine. Aerosol Science and Technology, 1998, 29, 355-356.	1.5	11
164	Near-field measurements on contrail properties from fuels with different sulfur content. Journal of Geophysical Research, 1997, 102, 29867-29880.	3.3	82
165	The dependence of the specific attenuation cross-section on black carbon mass fraction and particle size. Atmospheric Environment, 1997, 31, 661-672.	1.9	189
166	Photoacoustic soot sensor for in-situ black carbon monitoring. Applied Physics B: Lasers and Optics, 1996, 63, 191-197.	1.1	57
167	Method comparison study on soot-selective techniques. Mikrochimica Acta, 1995, 117, 215-237.	2.5	55
168	Novel design of a resonant photoacoustic spectrophone for elemental carbon mass monitoring. Applied Physics Letters, 1995, 66, 1285-1287.	1.5	34
169	Intercomparison study on soot-selective methods — field study results from several polluted areas in Germany. Journal of Aerosol Science, 1995, 26, S393-S394.	1.8	9
170	Diesel exhaust particle size distribution measurements under dynamic conditions. Journal of Aerosol Science, 1995, 26, S659-S660.	1.8	5
171	The photoacoustic soot sensor (pass) — Validation for airborne particulate carbon. Journal of Aerosol Science, 1995, 26, S759-S760.	1.8	2
172	Generation of carbon aerosols by fragmentation of acetylene in a laser-induced plasma. Journal of Aerosol Science, 1994, 25, 265-275.	1.8	7
173	Photoacoustic sensor for carbon aerosols. Sensors and Actuators B: Chemical, 1993, 14, 640-641.	4.0	8
174	<title>In-situ measurements on carbon aerosols with photoacoustic spectroscopy</title> . , 1993, 1716, 510.		9
175	Knowledge sharing and discovery across heterogeneous research infrastructures. Open Research Europe, 0, 1, 68.	2.0	0
176	Knowledge sharing and discovery across heterogeneous research infrastructures. Open Research Europe, 0, 1, 68.	2.0	1