
Sérgio Miguel Cardoso Nascimento

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3594531/publications.pdf

Version: 2024-02-01

Sérgio Miguel Cardoso

#	Article	IF	CITATIONS
1	Frequency of metamerism in natural scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 2359.	1.5	247
2	Statistics of spatial cone-excitation ratios in natural scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1484.	1.5	196
3	Information limits on neural identification of colored surfaces in natural scenes. Visual Neuroscience, 2004, 21, 331-336.	1.0	111
4	The number of discernible colors in natural scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2918.	1.5	107
5	Spatial distributions of local illumination color in natural scenes. Vision Research, 2016, 120, 39-44.	1.4	87
6	Detecting natural changes of cone–excitation ratios in simple and complex coloured images. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1395-1402.	2.6	67
7	Four issues concerning colour constancy and relational colour constancy. Vision Research, 1997, 37, 1341-1345.	1.4	63
8	Recovering spectral data from natural scenes with an RGB digital camera and colored filters. Color Research and Application, 2007, 32, 352-360.	1.6	57
9	Correlated color temperature preferred by observers for illumination of artistic paintings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 623.	1.5	53
10	Color constancy in natural scenes explained by global image statistics. Visual Neuroscience, 2006, 23, 341-349.	1.0	50
11	Best lighting for visual appreciation of artistic paintings—experiments with real paintings and real illumination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A214.	1.5	50
12	Colour constancy from temporal cues: better matches with less variability under fast illuminant changes. Vision Research, 2001, 41, 285-293.	1.4	49
13	The colors of paintings and viewers' preferences. Vision Research, 2017, 130, 76-84.	1.4	48
14	Parallel detection of violations of color constancy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8151-8156.	7.1	46
15	Multispectral synthesis of daylight using a commercial digital CCD camera. Applied Optics, 2005, 44, 5696.	2.1	43
16	Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 1017.	1.5	38
17	Psychophysical estimation of the best illumination for appreciation of Renaissance paintings. Visual Neuroscience, 2006, 23, 669-674.	1.0	38
18	Statistics of colors in paintings and natural scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A170.	1.5	38

Sérgio Miguel Cardoso

#	Article	IF	CITATIONS
19	Relational color constancy in achromatic and isoluminant images. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 225.	1.5	33
20	Visual sensitivity to color errors in images of natural scenes. Visual Neuroscience, 2006, 23, 555-559.	1.0	31
21	Time-lapse ratios of cone excitations in natural scenes. Vision Research, 2016, 120, 45-60.	1.4	28
22	IOP Variations in the Sitting and Supine Positions. Journal of Glaucoma, 2010, 19, 609-612.	1.6	25
23	Lighting spectrum to maximize colorfulness. Optics Letters, 2012, 37, 407.	3.3	25
24	The number of discernible colors perceived by dichromats in natural scenes and the effects of colored lenses. Visual Neuroscience, 2008, 25, 493-499.	1.0	22
25	Minimalist Surface-Colour Matching. Perception, 2005, 34, 1009-1013.	1.2	20
26	Effect of Scene Dimensionality on Colour Constancy with Real Three-Dimensional Scenes and Objects. Perception, 2010, 39, 770-779.	1.2	20
27	Color Constancy of Red-Green Dichromats and Anomalous Trichromats. , 2010, 51, 2286.		20
28	Color constancy by asymmetric color matching with real objects in three-dimensional scenes. Visual Neuroscience, 2004, 21, 341-345.	1.0	19
29	Approaching ideal observer efficiency in using color to retrieve information from natural scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, B14.	1.5	19
30	Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra. Journal of Biomedical Optics, 2011, 16, 076001.	2.6	19
31	Naturalness and aesthetics of colors – Preference for color compositions perceived as natural. Vision Research, 2021, 185, 98-110.	1.4	19
32	Detecting changes of spatial cone-excitation ratios in dichoptic viewing. Vision Research, 2001, 41, 2601-2606.	1.4	18
33	Effect of Scene Complexity on Colour Constancy with Real Three-Dimensional Scenes and Objects. Perception, 2005, 34, 947-950.	1.2	18
34	Best lighting for naturalness and preference. Journal of Vision, 2013, 13, 4-4.	0.3	18
35	Fixation in Patients with Juvenile Macular Disease. Optometry and Vision Science, 2007, 84, 852-858.	1.2	17
36	Robust colour constancy in red-green dichromats. PLoS ONE, 2017, 12, e0180310.	2.5	17

Sérgio Miguel Cardoso

#	Article	IF	CITATIONS
37	Hyperspectral environmental illumination maps: characterizing directional spectral variation in natural environments. Optics Express, 2019, 27, 32277.	3.4	15
38	Minimum-variance cone-excitation ratios and the limits of relational color constancy. Visual Neuroscience, 2004, 21, 337-340.	1.0	14
39	Anomalous trichromats' judgments of surface color in natural scenes under different daylights. Visual Neuroscience, 2006, 23, 629-635.	1.0	14
40	Color constancy in natural scenes with and without an explicit illuminant cue. Visual Neuroscience, 2006, 23, 351-356.	1.0	14
41	Number of discernible colors for color-deficient observers estimated from the MacAdam limits. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 2106.	1.5	14
42	Psychophysical optimization of lighting spectra for naturalness, preference, and chromatic diversity. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A144.	1.5	14
43	Describing natural colors with Munsell and NCS color systems. Color Research and Application, 2019, 44, 411-418.	1.6	14
44	Color rendering of art paintings under CIE illuminants for normal and color deficient observers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 1668.	1.5	12
45	Perception of Illuminant Colour Changes across Real Scenes. Perception, 2009, 38, 1109-1117.	1.2	12
46	How temporal cues can aid colour constancy. Color Research and Application, 2001, 26, S180-S185.	1.6	11
47	Protanopic observers show nearly normal color constancy with natural reflectance spectra. Visual Neuroscience, 2004, 21, 347-351.	1.0	11
48	Information Limits on Identification of Natural Surfaces by Apparent Colour. Perception, 2005, 34, 1003-1008.	1.2	11
49	Chromatic effects of metamers of D65 on art paintings. Ophthalmic and Physiological Optics, 2010, 30, 632-637.	2.0	11
50	Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers. Ophthalmic and Physiological Optics, 2010, 30, 618-625.	2.0	11
51	Supporting history of art with colorimetry: The paintings of Amadeo de Souza ardoso. Color Research and Application, 2018, 43, 304-310.	1.6	10
52	An independent contribution of colour to the aesthetic preference for paintings. Vision Research, 2020, 177, 109-117.	1.4	10
53	Robust Single Trial Identification of Conscious Percepts Triggered by Sensory Events of Variable Saliency. PLoS ONE, 2014, 9, e86201.	2.5	10
54	A chromatic diversity index based on complex scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A174.	1.5	9

4

#	Article	IF	CITATIONS
55	Effects of high-color-discrimination capability spectra on color-deficient vision. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1780.	1.5	9
56	The colors of natural scenes benefit dichromats. Vision Research, 2019, 158, 40-48.	1.4	9
57	Art through the Colors of Graffiti: From the Perspective of the Chromatic Structure. Sensors, 2020, 20, 2531.	3.8	9
58	Hyperspectral optical imaging of two different species of lepidoptera. Nanoscale Research Letters, 2011, 6, 369.	5.7	8
59	Universality and superiority in preference for chromatic composition of art paintings. Scientific Reports, 2022, 12, 4294.	3.3	8
60	Assessing the effects of dynamic luminance contrast noise masking on a color discrimination task. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A178.	1.5	7
61	Color constancy of color reproductions in art paintings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B324.	1.5	6
62	Changes in spatial extent and peak double optical density of human macular pigment with age. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A87.	1.5	5
63	Near perfect visual compensation for atmospheric color distortions. Color Research and Application, 2020, 45, 837-845.	1.6	5
64	Contrast edge colors under different natural illuminations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A240.	1.5	4
65	The Best CCT for Appreciation of Paintings under Daylight Illuminants is Different for Occidental and Oriental Viewers. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 310-318.	2.9	4
66	Information gains from commercial spectral filters in anomalous trichromacy. Optics Express, 2022, 30, 16883.	3.4	4
67	Chromatic losses in natural scenes with viewing distance. Color Research and Application, 2014, 39, 341-346.	1.6	3
68	Tritanopic Colour Constancy Under Daylight Changes?. , 2003, , 218-224.		3
69	Chromatic changes in paintings of Adriano de Sousa Lopes after the removal of aged varnish. Conservar Patrimonio, 2020, 34, 50-64.	0.4	3
70	The Frequency of Metamerism in Natural Scenes. Optics and Photonics News, 2007, 18, 47.	0.5	2
71	How Good Are RGB Cameras Retrieving Colors of Natural Scenes and Paintings?—A Study Based on Hyperspectral Imaging. Sensors, 2020, 20, 6242.	3.8	2
72	Red–Green Colour Deficiency and Colour Constancy Under Orthogonal-Daylight Changes. , 2003, , 225-230.		2

SéRGIO MIGUEL CARDOSO

#	Article	IF	CITATIONS
73	Estimating the Colors of Paintings. Lecture Notes in Computer Science, 2015, , 236-242.	1.3	2
74	Breaking illuminant metamerism using directional spectral variation in natural environments: dichromats might benefit more than trichromats. Journal of Vision, 2019, 19, 9.	0.3	2
75	Neighboring chromaticity influences how white a surface looks. Vision Research, 2019, 165, 31-35.	1.4	1
76	The Display Gamut Available to Simulate Colors Perceived by Anomalous Trichromats. Lecture Notes in Computer Science, 2015, , 104-110.	1.3	1
77	Binary masks yielding Gaussian light distributions in Maxwellian view. Vision Research, 1997, 37, 2975-2979.	1.4	0
78	Color diversity index: the effect of chromatic adaptation. Proceedings of SPIE, 2011, , .	0.8	0
79	Seeing colors in real scenes. , 2011, , .		0
80	Lighting spectra for the maximum colorfulness. Proceedings of SPIE, 2011, , .	0.8	0
81	Real-time dynamic monochromatic ocular wavefront aberrations during accommodation: Preliminary results. , 2012, , .		0
82	Retinal imaging with photoreceptor resolution. , 2012, , .		0
83	Color Vision 2018: Introduction by the feature editors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, CV1.	1.5	0
84	Visual Search for Normal Color and Dichromatic Observers Using a Unique Distracter Color. Lecture Notes in Computer Science, 2015, , 111-117.	1.3	0