
Jayesh Dudhia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3594413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intra-operative Raman spectroscopy and ex vivo Raman mapping for assessment of cartilage degradation. Clinical Spectroscopy, 2021, 3, 100012.	1.3	8
2	Evaluation of the Effects of Synovial Multipotent Cells on Deep Digital Flexor Tendon Repair in a Large Animal Model of Intra‧ynovial Tendinopathy. Journal of Orthopaedic Research, 2020, 38, 128-138.	2.3	10
3	Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Frontiers in Bioengineering and Biotechnology, 2020, 8, 972.	4.1	120
4	An elusive force of nature. Equine Health, 2020, 2020, 14-16.	0.1	0
5	Histopathological and immunohistochemical evaluation of cellular response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch for tendon repair. Scientific Reports, 2020, 10, 4754.	3.3	23
6	Histological evaluation of cellular response to a multifilament electrospun suture for tendon repair. PLoS ONE, 2020, 15, e0234982.	2.5	8
7	Development of a Cartilage Oligomeric Matrix Protein Neo-Epitope Assay for the Detection of Intra-Thecal Tendon Disease. International Journal of Molecular Sciences, 2020, 21, 2155.	4.1	5
8	Scienceâ€inâ€brief: The importance of senescence in tendinopathy: New opportunities. Equine Veterinary Journal, 2020, 52, 349-351.	1.7	2
9	Cryopreservation of canine cardiosphereâ€derived cells: Implications for clinical application. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 115-124.	1.5	4
10	Bone marrow mesenchymal stem cells do not enhance intra-synovial tendon healing despite engraftment and homing to niches within the synovium. Stem Cell Research and Therapy, 2018, 9, 169.	5.5	29
11	Influence of commonly used pharmaceutical agents on equine bone marrowâ€derived mesenchymal stem cell viability. Equine Veterinary Journal, 2017, 49, 352-357.	1.7	18
12	Structural changes in cartilage and collagen studied by high temperature <scp>R</scp> aman spectroscopy. Biopolymers, 2017, 107, e23017.	2.4	20
13	Exposure of a tendon extracellular matrix to synovial fluid triggers endogenous and engrafted cell death: A mechanism for failed healing of intrathecal tendon injuries. Connective Tissue Research, 2017, 58, 438-446.	2.3	13
14	Modulation of mesenchymal stem cell genotype and phenotype by extracellular matrix proteins. Connective Tissue Research, 2016, 57, 443-453.	2.3	16
15	Immunophenotypic characterization of ovine mesenchymal stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 443-450.	1.5	24
16	In Vivo Imaging and Tracking of Technetium-99m Labeled Bone Marrow Mesenchymal Stem Cells in Equine Tendinopathy. Journal of Visualized Experiments, 2015, , e52748.	0.3	11
17	Investigating the Postmortem Molecular Biology of Cartilage and its Potential Forensic Applications. Journal of Forensic Sciences, 2015, 60, 1061-1067.	1.6	9
18	90â€Hyperthermia Induced Stress Proteins In Equine Superficial Digital Flexor Tendon. British Journal of Sports Medicine, 2014, 48, A59.1-A59.	6.7	0

JAYESH DUDHIA

#	Article	IF	CITATIONS
19	Viability of equine mesenchymal stem cells during transport and implantation. Stem Cell Research and Therapy, 2014, 5, 94.	5.5	43
20	Proteomic Analysis of Tendon Extracellular Matrix Reveals Disease Stage-specific Fragmentation and Differential Cleavage of COMP (Cartilage Oligomeric Matrix Protein). Journal of Biological Chemistry, 2014, 289, 4919-4927.	3.4	28
21	Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution. Matrix Biology, 2014, 40, 34-45.	3.6	43
22	Mesenchymal stem cells modulate release of matrix proteins from tendon surfaces <i>inÂvitro</i> : a potential beneficial therapeutic effect. Regenerative Medicine, 2014, 9, 295-308.	1.7	14
23	Resolving an inflammatory concept: The importance of inflammation and resolution in tendinopathy. Veterinary Immunology and Immunopathology, 2014, 158, 121-127.	1.2	90
24	Detection of cartilage matrix degradation by autofluorescence lifetime. Matrix Biology, 2013, 32, 32-38.	3.6	36
25	Science in brief: Resolving tendon inflammation. A new perspective. Equine Veterinary Journal, 2013, 45, 398-400.	1.7	10
26	Distribution of injected technetium ^{99m} ″abeled mesenchymal stem cells in horses with naturally occurring tendinopathy. Journal of Orthopaedic Research, 2013, 31, 1096-1102.	2.3	71
27	Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy. PLoS ONE, 2013, 8, e75697.	2.5	146
28	Implantation of bone marrowâ€derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Veterinary Journal, 2012, 44, 25-32.	1.7	313
29	Macrophage Sub-Populations and the Lipoxin A4 Receptor Implicate Active Inflammation during Equine Tendon Repair. PLoS ONE, 2012, 7, e32333.	2.5	69
30	Inflamm-Aging and Arachadonic Acid Metabolite Differences with Stage of Tendon Disease. PLoS ONE, 2012, 7, e48978.	2.5	55
31	Cell-based Therapies for Tendon and Ligament Injuries. Veterinary Clinics of North America Equine Practice, 2011, 27, 315-333.	0.7	38
32	The relationship between in vivo limb and in vitro tendon mechanics after injury: A potential novel clinical tool for monitoring tendon repair. Equine Veterinary Journal, 2011, 43, 418-423.	1.7	24
33	Aging enhances a mechanically-induced reduction in tendon strength by an active process involving matrix metalloproteinase activity. Aging Cell, 2007, 6, 547-556.	6.7	111
34	Stem cells in veterinary medicine – attempts at regenerating equine tendon after injury. Trends in Biotechnology, 2007, 25, 409-416.	9.3	152
35	Enhanced concentration of COMP (cartilage oligomeric matrix protein) in osteochondral fractures from racing Thoroughbreds. Journal of Orthopaedic Research, 2005, 23, 156-163.	2.3	29
36	Aggrecan, aging and assembly in articular cartilage. Cellular and Molecular Life Sciences, 2005, 62, 2241-2256.	5.4	168

Jayesh Dudhia

#	Article	IF	CITATIONS
37	Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage. Biochemical Journal, 2003, 370, 69-79.	3.7	54
38	The STR/ort mouse and its use as a model of osteoarthritis. Osteoarthritis and Cartilage, 2001, 9, 85-91.	1.3	119
39	Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability. Biochemical Journal, 1999, 337, 77-82.	3.7	59
40	Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage. Biochemical Journal, 1996, 313, 933-940.	3.7	82
41	Quantification of aggrecan and link-protein mRNA in human articular cartilage of different ages by competitive reverse transcriptase-PCR. Biochemical Journal, 1996, 319, 489-498.	3.7	41
42	Immunoglobulin fold and tandem repeat structures in proteoglycan N-terminal domains and link protein. Journal of Molecular Biology, 1989, 206, 737-748.	4.2	94