Aparna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3594026/publications.pdf

Version: 2024-02-01

32	161	7	11
papers	citations	h-index	g-index
33	33	33	123
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. Catalysis Reviews - Science and Engineering, 2024, 66, $1-118$.	12.9	9
2	Semiconductor characteristics of tellurium and its implementations. ChemistrySelect, 2023, 8, 4659-4687.	1.5	1
3	Versatile Synthesis of Organic Compounds Derived from Ascorbic Acid. Current Organocatalysis, 2022, 9, 14-33.	0.5	5
4	LED Light Sources in Organic Synthesis: An Entry to a Novel Approach. Letters in Organic Chemistry, 2022, 19, 283-292.	0.5	6
5	A Novel Baker's Yeast-Mediated Microwave-Induced Reduction of Racemic 3-Keto-2-Azetidinones: Facile Entry to Optically Active Hydroxy β-Lactam Derivatives. Current Organocatalysis, 2022, 9, 195-198.	0.5	4
6	Microwave-induced biocatalytic reactions toward medicinally important compounds. ChemistrySelect, 2022, 7, 507-538.	1.5	1
7	Conceptual design and cost-efficient environmentally Benign synthesis of beta-lactams. ChemistrySelect, 2022, .	1.5	O
8	Tellurium in carbohydrate synthesis. ChemistrySelect, 2022, .	1.5	0
9	Tellurium-based chemical sensors. ChemistrySelect, 2022, .	1.5	O
10	Tellurium-based solar cells. ChemistrySelect, 2022, .	1.5	0
11	Tellurium-induced cyclization of olefinic compounds. ChemistrySelect, 2022, .	1.5	0
12	Tellurium-induced functional group activation. ChemistrySelect, 2022, .	1.5	0
13	Microwave-Induced Surface-Mediated Highly Efficient Regioselective Nitration of Aromatic Compounds: Effects of Penetration Depth. Asian Journal of Chemistry, 2021, 33, 2203-2206.	0.3	4
14	Microwave-assisted oxidation and reduction reactions. , 2021, , 199-244.		0
15	Future trends in microwave chemistry and biology. , 2021, , 375-384.		O
16	Microwave-assisted synthesis of oxygen- and sulfur-containing organic compounds., 2021,, 107-142.		0
17	Recent Developments in Semipolar InGaN Laser Diodes. Semiconductors, 2021, 55, 272-282.	0.5	5
18	Influence of dipole moments on the medicinal activities of diverse organic compounds. Journal of the Indian Chemical Society, 2021, 98, 100005.	2.8	27

#	Article	IF	Citations
19	Thione Derivatives as Medicinally Important Compounds. ChemistrySelect, 2021, 6, 9069-9100.	1.5	11
20	Modeling and interpreting microwave effects. , 2021, , 61-104.		0
21	Microwave-assisted CVD processes for diamond synthesis. , 2021, , 329-374.		0
22	Advances in heterocycles as DNA intercalating cancer drugs. ChemistrySelect, 2021, .	1.5	0
23	Versatile thiosugars in medicinal chemistry. , 2020, , 549-574.		9
24	Dipole moment in medicinal research: Green and sustainable approach. , 2020, , 921-964.		13
25	Ascorbic Acid-mediated Reactions in Organic Synthesis. Current Organocatalysis, 2020, 7, 212-241.	0.5	14
26	Optical properties of bimodally distributed InAs quantum dots grown on digital AlAs0.56Sb0.44matrix for use in intermediate band solar cells. Journal of Applied Physics, 2017, 121, 214304.	2.5	5
27	Carrier Localization in GaN/AlN Quantum Dots As Revealed by Three-Dimensional Multimicroscopy. Nano Letters, 2017, 17, 4261-4269.	9.1	14
28	Comparative study of photoluminescence from In _{0.3} Ga _{0.7} As/GaAs surface and buried quantum dots. Nanotechnology, 2016, 27, 465701.	2.6	17
29	High Precision, Electrochemical Detection of Reversible Binding of Recombinant Proteins on Wide Bandgap GaN Electrodes Functionalized with Biomembrane Models. Advanced Functional Materials, 2014, 24, 4927-4934.	14.9	4
30	III-nitride nanostructures for optical gas detection and pH sensing. Proceedings of SPIE, 2013, , .	0.8	4
31	Performance improvement of AlN/GaN-based intersubband detectors thanks to quantum dot active regions. Proceedings of SPIE, 2010, , .	0.8	0
32	Performance Improvement of AlN–GaN-Based Intersubband Detectors by Using Quantum Dots. IEEE Photonics Technology Letters, 2010, 22, 1087-1089.	2.5	8