
Amir Pouyan Nejadhashemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 2017, 16, 145-163.	3.2	775
2	Climate change and eastern Africa: a review of impact on major crops. Food and Energy Security, 2015, 4, 110-132.	4.3	360
3	Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. Journal of Environmental Management, 2012, 103, 24-40.	7.8	108
4	Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. Journal of Hydrology, 2018, 556, 39-49.	5.4	104
5	Development and evaluation of a comprehensive drought index. Journal of Environmental Management, 2017, 185, 31-43.	7.8	90
6	A review of macroinvertebrate- and fish-based stream health indices. Ecohydrology and Hydrobiology, 2015, 15, 53-67.	2.3	81
7	Water quality impact assessment of large-scale biofuel crops expansion in agricultural regions of Michigan. Biomass and Bioenergy, 2011, 35, 2200-2216.	5.7	76
8	Climate change and irrigation demand: Uncertainty and adaptation. Journal of Hydrology: Regional Studies, 2015, 3, 247-264.	2.4	65
9	Modeling the hydrological significance of wetland restoration scenarios. Journal of Environmental Management, 2014, 133, 121-134.	7.8	61
10	Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrological Processes, 2014, 28, 431-445.	2.6	54
11	Case study: Fixture water use and drinking water quality in a new residential green building. Chemosphere, 2018, 195, 80-89.	8.2	46
12	An investigation of spatial and temporal drinking water quality variation in green residential plumbing. Building and Environment, 2020, 169, 106566.	6.9	46
13	Assessing Best Management Practice Implementation Strategies under Climate Change Scenarios. Transactions of the ASABE, 2011, 54, 171-190.	1.1	45
14	Modeling the effects of conservation practices on stream health. Science of the Total Environment, 2012, 435-436, 380-391.	8.0	45
15	Effects on aquatic and human health due to large scale bioenergy crop expansion. Science of the Total Environment, 2011, 409, 3215-3229.	8.0	43
16	Large-scale climate change vulnerability assessment of stream health. Ecological Indicators, 2016, 69, 578-594.	6.3	43
17	A multi-objective approach to water and nutrient efficiency for sustainable agricultural intensification. Agricultural Systems, 2019, 173, 289-302.	6.1	41
18	Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios ¹ . Journal of the American Water Resources Association, 2012, 48, 90-112.	2.4	40

#	Article	IF	CITATIONS
19	Drinking water microbiology in a water-efficient building: stagnation, seasonality, and physicochemical effects on opportunistic pathogen and total bacteria proliferation. Environmental Science: Water Research and Technology, 2020, 6, 2902-2913.	2.4	40
20	Uncertainty Analysis of Hydrologic and Water Quality Predictions for a Small Watershed Using SWAT2000. Environmental Forensics, 2003, 4, 229-238.	2.6	37
21	Linking Biological Integrity and Watershed Models to Assess the Impacts of Historical Land Use and Climate Changes on Stream Health. Environmental Management, 2013, 51, 1147-1163.	2.7	34
22	Application of analytical hierarchy process for effective selection of agricultural best management practices. Journal of Environmental Management, 2014, 132, 165-177.	7.8	34
23	Optimal water allocation in irrigation networks based on real time climatic data. Agricultural Water Management, 2013, 117, 1-8.	5.6	32
24	Development of a socio-ecological environmental justice model for watershed-based management. Journal of Hydrology, 2014, 518, 162-177.	5.4	29
25	Ecohydrological model parameter selection for stream health evaluation. Science of the Total Environment, 2015, 511, 341-353.	8.0	29
26	Assessing uncertainty in best management practice effectiveness under future climate scenarios. Hydrological Processes, 2014, 28, 2550-2566.	2.6	28
27	How much conservation is enough? Defining implementation goals for healthy fish communities in agricultural rivers. Journal of Great Lakes Research, 2016, 42, 1302-1321.	1.9	28
28	Crop yield simulation optimization using precision irrigation and subsurface water retention technology. Environmental Modelling and Software, 2019, 119, 433-444.	4.5	28
29	Optimization of conservation practice implementation strategies in the context of stream health. Ecological Engineering, 2015, 84, 1-12.	3.6	27
30	Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management. Journal of Environmental Management, 2016, 168, 260-272.	7.8	27
31	Ecohydrological modeling for large-scale environmental impact assessment. Science of the Total Environment, 2016, 543, 274-286.	8.0	26
32	Spatial and Temporal Variabilities of Sediment Delivery Ratio. Water Resources Management, 2013, 27, 2483-2499.	3.9	25
33	Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale. Journal of Environmental Management, 2013, 127, 228-236.	7.8	24
34	Comparison of Four Models (STEPL, PLOAD, L-THIA, and SWAT) in Simulating Sediment, Nitrogen, and Phosphorus Loads and Pollutant Source Areas. Transactions of the ASABE, 2011, 54, 875-890.	1.1	23
35	Linking watershed-scale stream health and socioeconomic indicators with spatial clustering and structural equation modeling. Environmental Modelling and Software, 2015, 70, 113-127.	4.5	23
36	Evaluating the significance of wetland restoration scenarios on phosphorus removal. Journal of Environmental Management, 2017, 192, 184-196.	7.8	22

#	Article	IF	CITATIONS
37	Large-Scale Hydrologic Modeling of the Michigan and Wisconsin Agricultural Regions to Study Impacts of Land Use Changes. Transactions of the ASABE, 2012, 55, 821-838.	1.1	21
38	Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass and Bioenergy, 2013, 58, 198-209.	5.7	21
39	Relationships between Riparian Forest Fragmentation and Biological Indicators of Streams. Sustainability, 2019, 11, 2870.	3.2	21
40	Artificial intelligence models for suspended river sediment prediction: state-of-the art, modeling framework appraisal, and proposed future research directions. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1585-1612.	3.1	21
41	Environmental Impact Analysis of Biofuel Crops Expansion in the Saginaw River Watershed. Journal of Biobased Materials and Bioenergy, 2011, 5, 30-54.	0.3	19
42	Assessing the significance of wetland restoration scenarios on sediment mitigation plan. Ecological Engineering, 2015, 77, 103-113.	3.6	18
43	Impacts of Climate Change on Water Resources in Malawi. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	1.9	18
44	Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet. Journal of Environmental Management, 2013, 128, 735-748.	7.8	16
45	Integrating statistical and hydrological models to identify implementation sites for agricultural conservation practices. Environmental Modelling and Software, 2015, 72, 327-340.	4.5	16
46	Multiscale Assessment of the Impacts of Climate Change on Water Resources in Tanzania. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	16
47	Cropland management versus dredging: An economic analysis of reservoir sediment management. Lake and Reservoir Management, 2013, 29, 151-164.	1.3	15
48	Benefits of sparse population sampling in multi-objective evolutionary computing for large-Scale sparse optimization problems. Swarm and Evolutionary Computation, 2022, 69, 101025.	8.1	15
49	Regulators' and stakeholders' perspectives in a framework for bioenergy development. Land Use Policy, 2016, 59, 143-153.	5.6	14
50	A review of macroinvertebrate―and fishâ€based stream health modelling techniques. Ecohydrology, 2018, 11, e2022.	2.4	14
51	A Review of Climate Change Impacts on Water Resources in East Africa. Transactions of the ASABE, 2015, 58, 1493-1507.	1.1	13
52	Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm. Journal of Environmental Management, 2016, 181, 413-424.	7.8	13
53	Perspectives on Global Water Security. Transactions of the ASABE, 2020, 63, 69-80.	1.1	13
54	Evaluation of Multi- and Many-Objective Optimization Techniques to Improve the Performance of a Hydrologic Model Using Evapotranspiration Remote-Sensing Data. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	1.9	13

#	Article	IF	CITATIONS
55	Modeling Escherichia coli removal in constructed wetlands under pulse loading. Water Research, 2014, 50, 441-454.	11.3	12
56	Bayesian Regression and Neuro-Fuzzy Methods Reliability Assessment for Estimating Streamflow. Water (Switzerland), 2016, 8, 287.	2.7	12
57	Reducing current and future risks: Using climate change scenarios to test an agricultural conservation framework. Journal of Great Lakes Research, 2017, 43, 59-68.	1.9	12
58	Connecting microbial, nutrient, physiochemical, and land use variables for the evaluation of water quality within mixed use watersheds. Water Research, 2022, 219, 118526.	11.3	12
59	Application of Fuzzy Logic Techniques in Estimating the Regional Index Flow for Michigan. Transactions of the ASABE, 2013, 56, 103-115.	1.1	11
60	Defining drought in the context of stream health. Ecological Engineering, 2016, 94, 668-681.	3.6	11
61	Response of benthic macroinvertebrate communities to climate change. Ecohydrology and Hydrobiology, 2017, 17, 63-72.	2.3	11
62	Case Study: Evaluation of Streamflow Partitioning Methods. Journal of Irrigation and Drainage Engineering - ASCE, 2009, 135, 791-801.	1.0	10
63	Evaluating stream health based environmental justice model performance at different spatial scales. Journal of Hydrology, 2016, 538, 500-514.	5.4	10
64	Two-phase approach to improve stream health modeling. Ecological Informatics, 2016, 34, 13-21.	5.2	10
65	Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale. Journal of Hydrology, 2017, 552, 105-120.	5.4	10
66	Evaluation of the impacts of hydrologic model calibration methods on predictability of ecologically-relevant hydrologic indices. Journal of Hydrology, 2018, 564, 758-772.	5.4	10
67	Evaluation of neuro-fuzzy and Bayesian techniques in estimating suspended sediment loads. Sustainable Water Resources Management, 2019, 5, 639-654.	2.1	10
68	Evaluating the applicability of soil moisture-based metrics for gauging the resiliency of rainfed agricultural systems in the midwestern United States. Soil and Tillage Research, 2021, 205, 104818.	5.6	10
69	Quantification of resilience metrics as affected by conservation agriculture at a watershed scale. Agriculture, Ecosystems and Environment, 2021, 320, 107612.	5.3	10
70	Climate Change: A Call for Adaptation and Mitigation Strategies. Transactions of the ASABE, 2016, 59, 1709-1713.	1.1	9
71	MATLAB Hydrological Index Tool (MHIT): A high performance library to calculate 171 ecologically relevant hydrological indices. Ecological Informatics, 2016, 33, 17-23.	5.2	9
72	Resource use and economic impacts in the transition from small confinement to pasture-based dairies. Agricultural Systems, 2017, 153, 157-171.	6.1	9

#	Article	IF	CITATIONS
73	Multi-Scale Assessment of Relationships between Fragmentation of Riparian Forests and Biological Conditions in Streams. Sustainability, 2019, 11, 5060.	3.2	9
74	Impacts of Municipal Water–Rainwater Source Transitions on Microbial and Chemical Water Quality Dynamics at the Tap. Environmental Science & Technology, 2020, 54, 11453-11463.	10.0	9
75	An improved calibration technique to address high dimensionality and non-linearity in integrated groundwater and surface water models. Environmental Modelling and Software, 2022, 149, 105312.	4.5	9
76	Applications of computational fluid dynamics in fish and habitat studies. Ecohydrology and Hydrobiology, 2017, 17, 53-62.	2.3	8
77	Pasture diversification to combat climate change impacts on grazing dairy production. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 405-431.	2.1	8
78	Evaluating the climate resilience in terms of profitability and risk for a long-term corn-soybean-wheat rotation under different treatment systems. Climate Risk Management, 2021, 32, 100284.	3.2	8
79	A novel multi-objective model calibration method for ecohydrological applications. Environmental Modelling and Software, 2021, 144, 105161.	4.5	8
80	Hydrograph Separation by Incorporating Climatological Factors: Application to Small Experimental Watersheds. Journal of the American Water Resources Association, 2007, 43, 744-756.	2.4	7
81	Food Footprint as a Measure of Sustainability for Grazing Dairy Farms. Environmental Management, 2018, 62, 1073-1088.	2.7	7
82	Quantitative model of irrigation effect on maize yield by deep neural network. Neural Computing and Applications, 2020, 32, 10679-10692.	5.6	7
83	Modeling the persistence of viruses in untreated groundwater. Science of the Total Environment, 2020, 717, 134599.	8.0	7
84	Multidimensional Aspects of Sustainable Biofuel Feedstock Production. Sustainability, 2021, 13, 1424.	3.2	7
85	Harnessing Machine Learning Techniques for Mapping Aquaculture Waterbodies in Bangladesh. Remote Sensing, 2021, 13, 4890.	4.0	7
86	Watershed Physical and Hydrological Effects on Baseflow Separation. Journal of Hydrologic Engineering - ASCE, 2008, 13, 971-980.	1.9	6
87	Land-Based Wastewater Treatment System Modeling Using HYDRUS CW2D to Simulate the Fate, Transport, and Transformation of Soil Contaminants. Journal of Sustainable Water in the Built Environment, 2019, 5, .	1.6	6
88	Evaluation of the effectiveness of conservation practices under implementation site uncertainty. Journal of Environmental Management, 2018, 228, 197-204.	7.8	5
89	Opportunities and Challenges of Integrated Large-Scale PFAS Modeling: A Case Study for PFAS Modeling at a Watershed Scale. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	5
90	Developing a Risk-Based Consensus-Based Decision-Support System Model for Selection of the Desirable Urban Water Strategy: Kashafroud Watershed Study. Water (Switzerland), 2020, 12, 1305.	2.7	4

#	Article	IF	CITATIONS
91	Reducing deep learning network structure through variable reduction methods in crop modeling. Artificial Intelligence in Agriculture, 2021, 5, 196-207.	6.0	4
92	Would Forest Regrowth Compensate for Climate Change in the Amazon Basin?. Applied Sciences (Switzerland), 2022, 12, 7052.	2.5	4
93	Multi-site watershed model calibration for evaluating best management practice effectiveness in reducing fecal pollution. Human and Ecological Risk Assessment (HERA), 2020, 26, 2690-2715.	3.4	3
94	Agricultural Innovization: An Optimization-Driven solution for sustainable agricultural intensification in Michigan. Computers and Electronics in Agriculture, 2022, 199, 107143.	7.7	3
95	Computational modeling of wastewater land application treatment systems to determine strategies to improve carbon and nitrogen removal. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 657-667.	1.7	2
96	Simulation Optimization of Water Usage and Crop Yield Using Precision Irrigation. Lecture Notes in Computer Science, 2019, , 695-706.	1.3	2
97	Overview of Modeling, Applications, and Knowledge Gaps for Integrated Large-Scale PFAS Modeling. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	2
98	An integrated approach involving EMO and HYDRUS-2D software for SWRT-based precision irrigation. , 2015, , .		1
99	Food System Resilience and Sustainability in Cambodia. International Journal of Applied Geospatial Research, 2017, 8, 53-75.	0.3	1
100	Assessing the relative importance of parameter estimation in stream health based environmental justice modeling. Journal of Hydrology, 2018, 563, 211-222.	5.4	1
101	Analyzing the Variability of Remote Sensing and Hydrologic Model Evapotranspiration Products in a Watershed in Michigan. Journal of the American Water Resources Association, 2020, 56, 738-755.	2.4	1
102	Evaluating the Impacts of Land Use Changes on Hydrologic Responses in the Agricultural Regions of Michigan and Wisconsin. , 2010, , .		0
103	Assessing the Impacts of Climate Change on Best Management Practices (BMPs) Implementation Strategies. , 2010, , .		0
104	Selection of the Best Water Supply Scenario for Urban Demand Based on the Risk Analysis in Decision-Making Model. Green Energy and Technology, 2019, , 942-947.	0.6	0
105	A machine learning framework for predicting downstream water end-use events with upstream sensors. Water Science and Technology: Water Supply, 0, , .	2.1	Ο