
Mark C Brundrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coevolution of roots and mycorrhizas of land plants. New Phytologist, 2002, 154, 275-304.	3.5	1,196
2	Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 2009, 320, 37-77.	1.8	1,114
3	Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 2018, 220, 1108-1115.	3.5	901
4	Mycorrhizas in Natural Ecosystems. Advances in Ecological Research, 1991, 21, 171-313.	1.4	552
5	Efficient Lipid Staining in Plant Material with Sudan Red 7B or Fluoral Yellow 088 in Polyethylene Glycol-Glycerol. Biotechnic and Histochemistry, 1991, 66, 111-116.	0.7	520
6	A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma, 1988, 146, 133-142.	1.0	368
7	Diversity and classification of mycorrhizal associations. Biological Reviews, 2004, 79, 473-495.	4.7	351
8	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil, 2010, 334, 11-31.	1.8	323
9	Rampant Gene Loss in the Underground Orchid Rhizanthella gardneri Highlights Evolutionary Constraints on Plastid Genomes. Molecular Biology and Evolution, 2011, 28, 2077-2086.	3.5	248
10	FungalRoot: global online database of plant mycorrhizal associations. New Phytologist, 2020, 227, 955-966.	3.5	221
11	Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytologist, 2001, 152, 511-520.	3.5	176
12	Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications, 2019, 10, 5077.	5.8	170
13	Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycological Research, 2007, 111, 51-61.	2.5	154
14	The roots and mycorrhizas of herbaceous woodland plants. New Phytologist, 1990, 114, 469-479.	3.5	145
15	Comparative anatomy of roots and mycorrhizae of common Ontario trees. Canadian Journal of Botany, 1990, 68, 551-578.	1.2	139
16	An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots+. Physiologia Plantarum, 2005, 125, 051021083431001-???.	2.6	135
17	A developmental study of the early stages in vesicular–arbuscular mycorrhiza formation. Canadian Journal of Botany, 1985, 63, 184-194.	1.2	132
18	Effects of ectomycorrhizas and vesicular–arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytologist, 2000, 146, 545-555.	3.5	126

MARK C BRUNDRETT

#	Article	IF	CITATIONS
19	The roots and mycorrhizas of herbaceous woodland plants. New Phytologist, 1990, 114, 457-468.	3.5	121
20	Roots of Jarrah Forest Plants .I. Mycorrhizal Associations of Shrubs and Herbaceous Plants. Australian Journal of Botany, 1991, 39, 445.	0.3	121
21	Glomalean mycorrhizal fungi from tropical Australia. Mycorrhiza, 1999, 8, 305-314.	1.3	101
22	Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycological Research, 2003, 107, 1210-1220.	2.5	100
23	Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil, 2011, 348, 7-27.	1.8	99
24	Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi. , 2006, , 281-298.		96
25	Mycorrhizal fungus propagules in the jarrah forest. New Phytologist, 1994, 127, 539-546.	3.5	89
26	Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Australian Journal of Botany, 2001, 49, 619.	0.3	81
27	Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytologist, 2019, 221, 18-24.	3.5	74
28	Mycorrhizal fungus propagules in the jarrah forest. New Phytologist, 1995, 131, 461-469.	3.5	71
29	In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Australian Journal of Botany, 2006, 54, 375.	0.3	68
30	Evolution of Ectomycorrhizal Symbiosis in Plants. Ecological Studies, 2017, , 407-467.	0.4	68
31	Effects of habitat fragmentation on plant reproductive success and population viability at the landscape and habitat scale. Biological Conservation, 2013, 159, 16-23.	1.9	65
32	Scientific approaches to Australian temperate terrestrial orchid conservation. Australian Journal of Botany, 2007, 55, 293.	0.3	64
33	Global Diversity and Importance of Mycorrhizal and Nonmycorrhizal Plants. Ecological Studies, 2017, , 533-556.	0.4	59
34	Mycorrhizas in the Kakadu region of tropical Australia. Plant and Soil, 1996, 184, 159-171.	1.8	56
35	Carbon and nitrogen supply to the underground orchid, <i>Rhizanthella gardneri</i> . New Phytologist, 2010, 186, 947-956.	3.5	56
36	ldentity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycological Research, 2009, 113, 1097-1106.	2.5	52

MARK C BRUNDRETT

#	Article	IF	CITATIONS
37	Resolving the mycorrhizal status of important northern hemisphere trees. Plant and Soil, 2020, 454, 3-34.	1.8	48
38	Fruiting of putative ectomycorrhizal fungi under blue gum (Eucalyptus globulus) plantations of different ages in Western Australia. Mycorrhiza, 1999, 8, 255-261.	1.3	47
39	Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant and Soil, 2013, 370, 419-433.	1.8	44
40	Highâ€resolution secondary ion mass spectrometry analysis of carbon dynamics in mycorrhizas formed by an obligately mycoâ€heterotrophic orchid. Plant, Cell and Environment, 2014, 37, 1223-1230.	2.8	44
41	New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. Australian Journal of Botany, 2006, 54, 367.	0.3	37
42	Non-destructive assessment of spore germination of VAM fungi and production of pot cultures from single spores. Soil Biology and Biochemistry, 1995, 27, 85-91.	4.2	36
43	Survival of transplanted terrestrial orchid seedlings in urban bushland habitats with high or low weed cover. Australian Journal of Botany, 2006, 54, 383.	0.3	33
44	Glomalean mycorrhizal fungi from tropical Australia. Mycorrhiza, 1999, 8, 315-321.	1.3	32
45	Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids. American Journal of Botany, 2012, 99, 1133-1145.	0.8	32
46	Nursery inoculation of Eucalyptus seedlings in Western Australia and Southern China using spores and mycelial inoculum of diverse ectomycorrhizal fungi from different climatic regions. Forest Ecology and Management, 2005, 209, 193-205.	1.4	29
47	Impact of severe forest dieback caused by Phytophthora cinnamomi on macrofungal diversity in the northern jarrah forest of Western Australia. Forest Ecology and Management, 2010, 259, 1033-1040.	1.4	23
48	A Comprehensive Study of Orchid Seed Production Relative to Pollination Traits, Plant Density and Climate in an Urban Reserve in Western Australia. Diversity, 2019, 11, 123.	0.7	15
49	Looking for Arbuscular Mycorrhizal Fungi in the Fossil Record. , 2018, , 481-517.		12
50	Orchid Conservation and Mycorrhizal Associations. , 2002, , 195-226.		11
51	Distribution and Evolution of Mycorrhizal Types and Other Specialised Roots in Australia. Ecological Studies, 2017, , 361-394.	0.4	11
52	Habitat characteristics of the rare underground orchid Rhizanthella gardneri. Australian Journal of Botany, 2008, 56, 501.	0.3	10
53	Misallocation of mycorrhizal traits leads to misleading results. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12139-12140.	3.3	9
54	Auditing data resolves systemic errors in databases and confirms mycorrhizal trait consistency for most genera and families of flowering plants. Mycorrhiza, 2021, 31, 671-683.	1.3	9

#	Article	IF	CITATIONS
55	Using vital statistics and core-habitat maps to manage critically endangered orchids in the Western Australian wheatbelt. Australian Journal of Botany, 2016, 64, 51.	0.3	8
56	A monitoring toolkit for banksia woodlands: comparison of different scale methods to measure recovery of vegetation after fire. Remote Sensing in Ecology and Conservation, 2019, 5, 33-54.	2.2	8
57	Commentary on the de Vega et al. (2010) paper on hyphae in the parasitic plant <i>Cytinus</i> : Mycorrhizal fungi growing within plants are not always mycorrhizal ¹ . American Journal of Botany, 2011, 98, 595-596.	0.8	6
58	Monitoring vegetation recovery in the early stages of theÂDirk Hartog Island Restoration Programme using high temporal frequency Landsat imagery. Ecological Management and Restoration, 2019, 20, 250-261.	0.7	6
59	Colonisation of jarrah forest bauxite-mine rehabilitation areas by orchid mycorrhizal fungi. Australian Journal of Botany, 2007, 55, 653.	0.3	5
60	Best served deep: The seedbank from salvaged topsoil underscores the role of the dispersal filter in restoration practice. Applied Vegetation Science, 2021, 24, .	0.9	5
61	Fossils of Arbuscular Mycorrhizal Fungi Give Insights Into the History of a Successful Partnership With Plants. , 2018, , 461-480.		4
62	Why <i>Mycophoris</i> is not an orchid seedling, and why <i>Synaptomitus</i> is not a fungal symbiont within this fossil. Botany, 2017, 95, 865-868.	0.5	3
63	Arbuscular Mycorrhizas in Plant Communities. , 2002, , 151-193.		3
64	Ectomycorrhizas in Plant Communities. , 2002, , 105-150.		1
65	The Eriochilus dilatatus (Orchidaceae) complex in Western Australia: subspecies taxonomy is not supported by consistent differences in morphology or distribution. Australian Systematic Botany,	0.3	Ο