
Mark D Szczelkun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9798-9803.	7.1	397
2	Evidence for DNA Translocation by the ISWI Chromatin-Remodeling Enzyme. Molecular and Cellular Biology, 2003, 23, 1935-1945.	2.3	131
3	Enzyme-Mediated DNA Looping. Annual Review of Biophysics and Biomolecular Structure, 2004, 33, 1-24.	18.3	102
4	Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I11Edited by J. Karn. Journal of Molecular Biology, 2001, 306, 417-431.	4.2	83
5	The Helicase-Like Domains of Type III Restriction Enzymes Trigger Long-Range Diffusion Along DNA. Science, 2013, 340, 353-356.	12.6	75
6	How to get from A to B: strategies for analysing protein motion on DNA. European Biophysics Journal, 2002, 31, 257-267.	2.2	70
7	Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO Journal, 2008, 27, 1388-1398.	7.8	62
8	Type III restriction enzymes communicate in 1D without looping between their target sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1748-1753.	7.1	61
9	Sequence-Specific Binding of DNA by the EcoRV Restriction and Modification Enzymes with Nucleic Acid and Cofactor Analogs. Biochemistry, 1995, 34, 10724-10733.	2.5	58
10	DNA excision by the Sfil restriction endonuclease. Journal of Molecular Biology, 1998, 281, 419-432.	4.2	58
11	Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Research, 2007, 35, 1802-1811.	14.5	58
12	When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO Journal, 2006, 25, 2230-2239.	7.8	57
13	Continuous Assays for DNA Translocation Using Fluorescent Triplex Dissociation: Application to Type I Restriction Endonucleases. Journal of Molecular Biology, 2005, 348, 895-915.	4.2	54
14	Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems. Current Biology, 2020, 30, R1189-R1202.	3.9	48
15	Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20263-20268.	7.1	46
16	Selection of non-specific DNA cleavage sites by the type IC restriction endonuclease EcoR124I. Journal of Molecular Biology, 1997, 271, 112-123.	4.2	43
17	Type III restriction enzymes cleave DNA by long-range interaction between sites in both head-to-head and tail-to-tail inverted repeat. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9123-9128.	7.1	41
18	Analysis of DNA looping interactions by type II restriction enzymes that require two copies of their recognition sites 1 1Edited by J. Karn. Journal of Molecular Biology, 2001, 311, 515-527.	4.2	36

MARK D SZCZELKUN

#	Article	IF	CITATIONS
19	S-Adenosyl Methionine Prevents Promiscuous DNA Cleavage by the EcoP1I type III Restriction Enzyme. Journal of Molecular Biology, 2003, 333, 321-335.	4.2	34
20	Dynamics of initiation, termination and reinitiation of DNA translocation by the motor proteinEcoR124I. EMBO Journal, 2005, 24, 4188-4197.	7.8	33
21	Comparison Between Shear Force and Tapping Mode AFM - High Resolution Imaging of DNA. Single Molecules, 2002, 3, 105-110.	0.9	30
22	Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition. Cell Host and Microbe, 2022, 30, 31-40.e5.	11.0	30
23	Kinetic Models of Translocation, Head-On Collision, and DNA Cleavage by Type I Restriction Endonucleasesâ€. Biochemistry, 2002, 41, 2067-2074.	2.5	29
24	Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA. Nucleic Acids Research, 2014, 42, 5139-5150.	14.5	29
25	Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity. Nucleic Acids Research, 2016, 44, 7817-7829.	14.5	29
26	The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a. Genes, 2019, 10, 169.	2.4	29
27	DNA communications by Type III restriction endonucleasesconfirmation of 1D translocation over 3D looping. Nucleic Acids Research, 2004, 32, 4166-4174.	14.5	28
28	Characterization of the Type III restriction endonuclease PstII from Providencia stuartii. Nucleic Acids Research, 2005, 33, 4775-4787.	14.5	27
29	A general assay for restriction endonucleases and other DNA-modifying enzymes with plasmid substrates. Molecular Biotechnology, 1995, 4, 259-268.	2.4	26
30	Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes. Nature Chemical Biology, 2015, 11, 870-877.	8.0	26
31	Random walk models for DNA synapsis by resolvase. Journal of Molecular Biology, 1997, 270, 413-425.	4.2	25
32	A chlorite mineral surface actively drives the deposition of DNA molecules in stretched conformations. Nanotechnology, 2006, 17, 3897-3902.	2.6	25
33	DNA cleavage and methylation specificity of the single polypeptide restriction–modification enzyme LlaGI. Nucleic Acids Research, 2009, 37, 7206-7218.	14.5	25
34	5′ modifications to CRISPR–Cas9 gRNA can change the dynamics and size of R-loops and inhibit DNA cleavage. Nucleic Acids Research, 2020, 48, 6811-6823.	14.5	25
35	Maintaining a sense of direction during long-range communication on DNA. Biochemical Society Transactions, 2010, 38, 404-409.	3.4	24
36	A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I. Nucleic Acids Research, 2008, 36, 3939-3949.	14.5	22

MARK D SZCZELKUN

#	Article	IF	CITATIONS
37	The Interrelationship of Helicase and Nuclease Domains during DNA Translocation by the Molecular Motor EcoR124I. Journal of Molecular Biology, 2008, 384, 1273-1286.	4.2	17
38	The single polypeptide restriction–modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops. Nucleic Acids Research, 2009, 37, 7219-7230.	14.5	17
39	Mitochondrial import, health and mtDNA copy number variability using type II and type V CRISPR effectors. Journal of Cell Science, 2020, 133, .	2.0	16
40	The Type ISP Restriction-Modification enzymes LlaBIII and LlaGI use a translocation-collision mechanism to cleave non-specific DNA distant from their recognition sites. Nucleic Acids Research, 2013, 41, 1071-1080.	14.5	15
41	CRISPR–Cas12a-mediated DNA clamping triggers target-strand cleavage. Nature Chemical Biology, 2022, 18, 1014-1022.	8.0	15
42	Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by TypeÂlll restriction endonucleases. Biochemical Society Transactions, 2011, 39, 589-594.	3.4	14
43	Structural insights into DNA sequence recognition by Type ISP restriction-modification enzymes. Nucleic Acids Research, 2016, 44, 4396-4408.	14.5	14
44	How to proteins move along DNA? Lessons from type-I and type-III restriction endonucleases. Essays in Biochemistry, 2000, 35, 131-143.	4.7	14
45	Subunit assembly modulates the activities of the Type III restriction-modification enzyme PstII in vitro. Nucleic Acids Research, 2005, 33, 4788-4796.	14.5	11
46	An Mrr-family nuclease motif in the single polypeptide restriction–modification enzyme LlaGI. Nucleic Acids Research, 2009, 37, 7231-7238.	14.5	11
47	Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes. Nucleic Acids Research, 2011, 39, 7656-7666.	14.5	11
48	Hexameric assembly of the AAA+ protein McrB is necessary for GTPase activity. Nucleic Acids Research, 2019, 47, 868-882.	14.5	11
49	Direct and random routing of a molecular motor protein at a DNA junction. Nucleic Acids Research, 2006, 34, 4387-4394.	14.5	10
50	S-Adenosyl homocysteine and DNA ends stimulate promiscuous nuclease activities in the Type III restriction endonuclease EcoPI. Nucleic Acids Research, 2009, 37, 3934-3945.	14.5	10
51	DNA cleavage by CgII and NgoAVII requires interaction between N- and R-proteins and extensive nucleotide hydrolysis. Nucleic Acids Research, 2014, 42, 13887-13896.	14.5	10
52	Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes. Nucleic Acids Research, 2015, 43, 10870-10881.	14.5	10
53	DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion. Nucleic Acids Research, 2011, 39, 8042-8051.	14.5	9
54	Roles for Helicases as ATP-Dependent Molecular Switches. Advances in Experimental Medicine and Biology, 2013, 767, 225-244.	1.6	8

MARK D SZCZELKUN

#	Article	IF	CITATIONS
55	DNA cleavage by Type ISP Restriction–Modification enzymes is initially targeted to the 3′-5′ strand. Nucleic Acids Research, 2013, 41, 1081-1090.	14.5	7
56	ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation. Nucleic Acids Research, 2014, 42, 12082-12091.	14.5	5
57	Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations. Nucleic Acids Research, 2015, 43, gkv1129.	14.5	5
58	Dissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity. Nucleic Acids Research, 2012, 40, 6752-6764.	14.5	4
59	Switching roles for a helicase. Cell Cycle, 2013, 12, 3125-3126.	2.6	4
60	How to Build a DNA Unwinding Machine. Structure, 2012, 20, 1127-1128.	3.3	3
61	Cgll cleaves DNA using a mechanism distinct from other ATP-dependent restriction endonucleases. Nucleic Acids Research, 2017, 45, 8435-8447.	14.5	2
62	The H-subunit of the restriction endonuclease Cgll contains a prototype DEAD-Z1 helicase-like motor. Nucleic Acids Research, 2018, 46, 2560-2572.	14.5	1
63	ENDO-Pore: high-throughput linked-end mapping of single DNA cleavage events using nanopore sequencing. Nucleic Acids Research, 2021, 49, e118-e118.	14.5	1