
Bogdan A Stoica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Poly(ADP-ribose) Polymerase (PARP) Cleavage in Apoptosis. Journal of Biological Chemistry, 1999, 274, 22932-22940.	1.6	748
2	Progressive Neurodegeneration After Experimental Brain Trauma. Journal of Neuropathology and Experimental Neurology, 2014, 73, 14-29.	0.9	406
3	Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8333-8338.	3.3	355
4	Microglial/Macrophage Polarization Dynamics following Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 1732-1750.	1.7	248
5	Cell Death Mechanisms and Modulation in Traumatic Brain Injury. Neurotherapeutics, 2010, 7, 3-12.	2.1	236
6	Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 47.	3.1	228
7	Progressive inflammationâ€mediated neurodegeneration after traumatic brain or spinal cord injury. British Journal of Pharmacology, 2016, 173, 681-691.	2.7	217
8	Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiology of Aging, 2013, 34, 1397-1411.	1.5	213
9	Repeated Mild Traumatic Brain Injury Causes Chronic Neuroinflammation, Changes in Hippocampal Synaptic Plasticity, and Associated Cognitive Deficits. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1223-1232.	2.4	207
10	Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways. Journal of Neuroscience, 2014, 34, 10989-11006.	1.7	201
11	Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. Journal of Neuroscience, 2020, 40, 2960-2974.	1.7	193
12	Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia, 2009, 57, 550-560.	2.5	157
13	NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain, Behavior, and Immunity, 2016, 58, 291-309.	2.0	152
14	Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3β, and induction of the mitochondrial-dependent intrinsic caspase pathway. Molecular and Cellular Neurosciences, 2003, 22, 365-382.	1.0	150
15	Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain, 2007, 130, 2977-2992.	3.7	149
16	Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. Journal of Neuroinflammation, 2012, 9, 43.	3.1	144
17	Fluid-percussion–induced traumatic brain injury model in rats. Nature Protocols, 2010, 5, 1552-1563.	5.5	138
18	Downregulation of miR-23a and miR-27a following Experimental Traumatic Brain Injury Induces Neuronal Cell Death through Activation of Proapoptotic Bcl-2 Proteins. Journal of Neuroscience, 2014, 34, 10055-10071.	1.7	129

#	Article	IF	CITATIONS
19	BOK and NOXA Are Essential Mediators of p53-dependent Apoptosis. Journal of Biological Chemistry, 2004, 279, 28367-28374.	1.6	127
20	Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiology of Disease, 2013, 54, 252-263.	2.1	127
21	A Role of the Ca2+/Mg2+-dependent Endonuclease in Apoptosis and Its Inhibition by Poly(ADP-ribose) Polymerase. Journal of Biological Chemistry, 2000, 275, 21302-21308.	1.6	117
22	Caspase Inhibitor z-DEVD-fmk Attenuates Calpain and Necrotic Cell Death in Vitro and after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1119-1132.	2.4	111
23	Neuroprotection. Archives of Neurology, 2007, 64, 794.	4.9	110
24	Gene Expression Profile Changes Are Commonly Modulated across Models and Species after Traumatic Brain Injury. Journal of Neurotrauma, 2003, 20, 907-927.	1.7	109
25	Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain, Behavior, and Immunity, 2017, 66, 56-69.	2.0	109
26	Roscovitine Reduces Neuronal Loss, Glial Activation, and Neurologic Deficits after Brain Trauma. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1845-1859.	2.4	108
27	Role of the Cell Cycle in the Pathobiology of Central Nervous System Trauma. Cell Cycle, 2005, 4, 1286-1293.	1.3	107
28	Overâ€expression of HSP70 attenuates caspaseâ€dependent and caspaseâ€independent pathways and inhibits neuronal apoptosis. Journal of Neurochemistry, 2012, 123, 542-554.	2.1	104
29	PARP-1 Inhibition Attenuates Neuronal Loss, Microglia Activation and Neurological Deficits after Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 758-772.	1.7	103
30	Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiology of Aging, 2019, 77, 194-206.	1.5	99
31	Activation of Metabotropic Glutamate Receptor 5 Modulates Microglial Reactivity and Neurotoxicity by Inhibiting NADPH Oxidase. Journal of Biological Chemistry, 2009, 284, 15629-15639.	1.6	96
32	Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 1919-1935.	1.7	94
33	Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochemical and Biophysical Research Communications, 2002, 299, 201-207.	1.0	93
34	Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Molecular and Cellular Neurosciences, 2005, 29, 355-371.	1.0	92
35	Comparing the Predictive Value of Multiple Cognitive, Affective, and Motor Tasks after Rodent Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 2475-2489.	1.7	91
36	Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Cell Cycle, 2014, 13, 2446-2458.	1.3	90

#	Article	IF	CITATIONS
37	Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Theranostics, 2020, 10, 11376-11403.	4.6	88
38	Cell Migration along the Lateral Cortical Stream to the Developing Basal Telencephalic Limbic System. Journal of Neuroscience, 2006, 26, 11562-11574.	1.7	87
39	Selective CDK Inhibitor Limits Neuroinflammation and Progressive Neurodegeneration after Brain Trauma. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 137-149.	2.4	82
40	Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro. Journal of Neuroinflammation, 2019, 16, 41.	3.1	79
41	Activation of mGluR5 and Inhibition of NADPH Oxidase Improves Functional Recovery after Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 403-412.	1.7	78
42	Interferon-β Plays a Detrimental Role in Experimental Traumatic Brain Injury by Enhancing Neuroinflammation That Drives Chronic Neurodegeneration. Journal of Neuroscience, 2020, 40, 2357-2370.	1.7	78
43	Anandamide-induced cell death in primary neuronal cultures: role of calpain and caspase pathways. Cell Death and Differentiation, 2004, 11, 1121-1132.	5.0	74
44	Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Annals of Neurology, 2009, 66, 63-74.	2.8	71
45	Novel mGluR5 Positive Allosteric Modulator Improves Functional Recovery, Attenuates Neurodegeneration, and Alters Microglial Polarization after Experimental Traumatic Brain Injury. Neurotherapeutics, 2014, 11, 857-869.	2.1	70
46	Neuroprotection for traumatic brain injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 343-366.	1.0	68
47	MGLuR5 activation reduces βâ€amyloidâ€induced cell death in primary neuronal cultures and attenuates translocation of cytochrome c and apoptosisâ€inducing factor. Journal of Neurochemistry, 2004, 89, 1528-1536.	2.1	66
48	NOX2 deficiency alters macrophage phenotype through an IL-10/STAT3 dependent mechanism: implications for traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 65.	3.1	65
49	Role of DNAS1L3 in Ca2+- and Mg2+-dependent cleavage of DNA into oligonucleosomal and high molecular mass fragments. Nucleic Acids Research, 1999, 27, 1999-2005.	6.5	63
50	Acetaminophen Induces a Caspase-Dependent and Bcl-xL Sensitive Apoptosis in Human Hepatoma Cells and Lymphocytes. Basic and Clinical Pharmacology and Toxicology, 2002, 90, 38-50.	0.0	63
51	Cell Cycle Activation and Spinal Cord Injury. Neurotherapeutics, 2011, 8, 221-228.	2.1	63
52	Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain, Behavior, and Immunity, 2021, 92, 165-183.	2.0	62
53	The "Dark Side―of Endocannabinoids: A Neurotoxic Role for Anandamide. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 564-578.	2.4	57
54	Inhibition of miR-155 Limits Neuroinflammation and Improves Functional Recovery After Experimental Traumatic Brain Injury in Mice. Neurotherapeutics, 2019, 16, 216-230.	2.1	57

#	Article	IF	CITATIONS
55	CR8, a Novel Inhibitor of CDK, Limits Microglial Activation, Astrocytosis, Neuronal Loss, and Neurologic Dysfunction after Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 502-513.	2.4	56
56	Cell Cycle Activation and CNS Injury. Neurotoxicity Research, 2009, 16, 221-237.	1.3	55
57	Cbl-mediated Regulation of T Cell Receptor-induced AP1 Activation. Journal of Biological Chemistry, 1997, 272, 30806-30811.	1.6	53
58	Cyclin D1 Gene Ablation Confers Neuroprotection in Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 813-827.	1.7	53
59	Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. Journal of Neuroinflammation, 2012, 9, 169.	3.1	53
60	Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury. Neurobiology of Disease, 2012, 46, 745-758.	2.1	52
61	CR8, a Selective and Potent CDK Inhibitor, Provides Neuroprotection in Experimental Traumatic Brain Injury. Neurotherapeutics, 2012, 9, 405-421.	2.1	49
62	Inhibition of E2F1/CDK1 Pathway Attenuates Neuronal Apoptosis In Vitro and Confers Neuroprotection after Spinal Cord Injury In Vivo. PLoS ONE, 2012, 7, e42129.	1.1	46
63	Multifunctional Drug Treatment in Neurotrauma. Neurotherapeutics, 2009, 6, 14-27.	2.1	44
64	Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1347-1360.	1.7	43
65	Neutral Sphingomyelinase Inhibition Alleviates LPS-Induced Microglia Activation and Neuroinflammation after Experimental Traumatic Brain Injury. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 338-352.	1.3	42
66	Proton extrusion during oxidative burst in microglia exacerbates pathological acidosis following traumatic brain injury. Glia, 2021, 69, 746-764.	2.5	42
67	Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle, 2012, 11, 1782-1795.	1.3	41
68	Neuroprotective Effects of Geranylgeranylacetone in Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1897-1908.	2.4	39
69	Functional Independence and Interdependence of the Src Homology Domains of Phospholipase C-γ1 in B-Cell Receptor Signal Transduction. Molecular and Cellular Biology, 1999, 19, 7388-7398.	1.1	38
70	Pathophysiological Response to Experimental Diffuse Brain Trauma Differs as a Function of Developmental Age. Developmental Neuroscience, 2010, 32, 442-453.	1.0	37
71	S100B Inhibition Reduces Behavioral and Pathologic Changes in Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 2010-2020.	2.4	37
72	Metabotropic glutamate receptorâ€mediated signaling in neuroglia. Environmental Sciences Europe, 2012, 1, 136-150.	2.6	36

#	Article	IF	CITATIONS
73	Mechanisms of JP-8 Jet Fuel Toxicity. I. Induction of Apoptosis in Rat Lung Epithelial Cells. Toxicology and Applied Pharmacology, 2001, 171, 94-106.	1.3	33
74	Traumatic Brain Injury Induces cGAS Activation and Type I Interferon Signaling in Aged Mice. Frontiers in Immunology, 2021, 12, 710608.	2.2	33
75	Ablation of the transcription factors E2F1-2 limits neuroinflammation and associated neurological deficits after contusive spinal cord injury. Cell Cycle, 2015, 14, 3698-3712.	1.3	32
76	Mechanisms of JP-8 Jet Fuel Cell Toxicity. II. Induction of Necrosis in Skin Fibroblasts and Keratinocytes and Modulation of Levels of Bcl-2 Family Members. Toxicology and Applied Pharmacology, 2001, 171, 107-116.	1.3	27
77	Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice. Cell Death and Disease, 2019, 10, 839.	2.7	24
78	Enhanced Akt/GSKâ€3β/CREB signaling mediates the antiâ€inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. Journal of Neurochemistry, 2021, 156, 225-248.	2.1	24
79	MicroRNA-711–Induced Downregulation of Angiopoietin-1 Mediates Neuronal Cell Death. Journal of Neurotrauma, 2018, 35, 2462-2481.	1.7	23
80	Acyl-2-aminobenzimidazoles: A novel class of neuroprotective agents targeting mGluR5. Bioorganic and Medicinal Chemistry, 2015, 23, 2211-2220.	1.4	21
81	Sequences Surrounding the Src-Homology 3 Domain of Phospholipase CÎ ³ -1 Increase the Domain's Association with Cbl. Biochemical and Biophysical Research Communications, 1998, 249, 537-541.	1.0	20
82	Positive Allosteric Modulators (PAMs) of Metabotropic Glutamate Receptor 5 (mGluR5) Attenuate Microglial Activation. CNS and Neurological Disorders - Drug Targets, 2014, 13, 558-566.	0.8	19
83	Comparing effects of CDK inhibition and E2F1/2 ablation on neuronal cell death pathways in vitro and after traumatic brain injury. Cell Death and Disease, 2018, 9, 1121.	2.7	17
84	Down-Regulation of miR-23a-3p Mediates Irradiation-Induced Neuronal Apoptosis. International Journal of Molecular Sciences, 2020, 21, 3695.	1.8	17
85	Bidirectional Brain-Systemic Interactions and Outcomes After TBI. Trends in Neurosciences, 2021, 44, 406-418.	4.2	17
86	On the mechanism coupling phospholipase Cl̂³1 to the B- and T-cell antigen receptors. Advances in Enzyme Regulation, 2003, 43, 245-269.	2.9	16
87	Differential effects of Cbl and 70Z/3 Cbl on T cell receptor-induced phospholipase Cγ-1 activity. FEBS Letters, 2000, 470, 273-280.	1.3	13
88	Modulation of Stretch-Induced Enhancement of Neuronal NMDA Receptor Current by mGluR1 Depends upon Presence of Glia. Journal of Neurotrauma, 2003, 20, 1233-1249.	1.7	13
89	Protective effect of magnesium and metformin on endometrium and ovary in experimental diabetes mellitus. Magnesium Research, 2014, 27, 69-76.	0.4	10
90	Cyclopropyl-containing positive allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2275-2279.	1.0	9

#	Article	IF	CITATIONS
91	Quality management in general surgery: a review of the literature. Journal of Acute Disease, 2014, 3, 253-257.	0.0	8
92	Mortality after acute trauma: Progressive decreasing rather than a trimodal distribution. Journal of Acute Disease, 2015, 4, 205-209.	0.0	8
93	Mithramycin selectively attenuates DNA-damage-induced neuronal cell death. Cell Death and Disease, 2020, 11, 587.	2.7	8
94	Irradiation-Induced Upregulation of miR-711 Inhibits DNA Repair and Promotes Neurodegeneration Pathways. International Journal of Molecular Sciences, 2020, 21, 5239.	1.8	7
95	Longitudinal Assessment of Sensorimotor Function after Controlled Cortical Impact in Mice: Comparison of Beamwalk, Rotarod, and Automated Gait Analysis Tests. Journal of Neurotrauma, 2020, 37, 2709-2717.	1.7	6
96	Programmed Neuronal Cell Death Mechanisms in CNS Injury. , 2010, , 169-200.		4
97	Latest progress of research on acute abdominal injuries. Journal of Acute Disease, 2016, 5, 16-21.	0.0	3
98	Putative mGluR4 positive allosteric modulators activate Gi-independent anti-inflammatory mechanisms in microglia. Neurochemistry International, 2020, 138, 104770.	1.9	2
99	The effects of a 6-OHDA induced lesion in murine nuccleus accumbens on memory and oxidative stress status. Open Medicine (Poland), 2013, 8, 443-449.	0.6	1
100	Trauma pattern in a level I east-European trauma center. Journal of Acute Disease, 2015, 4, 322-326.	0.0	1
101	Visual saliency analysis in paintings. , 2017, , .		1
102	Deep-learning-assisted visualization for live-cell images. , 2017, , .		1
103	Massive lower gastrointestinal bleeding after low anterior resection for middle rectal cancer – case report. Journal of Acute Disease, 2015, 4, 73-77.	0.0	0
104	Mechanisms Involved in the Long-Term Effects of Traumatic Brain Injury on Colonic Homeostasis. Gastroenterology, 2017, 152, S731.	0.6	0