
Corinne Bousquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
2	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
3	Inter―and intraâ€ŧumoural heterogeneity in cancerâ€associated fibroblasts of human pancreatic ductal adenocarcinoma. Journal of Pathology, 2019, 248, 51-65.	2.1	215
4	Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. Journal of Clinical Investigation, 2016, 126, 4140-4156.	3.9	169
5	Pharmacological targeting of the protein synthesis <scp>mTOR</scp> /4E― <scp>BP</scp> 1 pathway in cancerâ€associated fibroblasts abrogates pancreatic tumourÂchemoresistance. EMBO Molecular Medicine, 2015, 7, 735-753.	3.3	164
6	International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacological Reviews, 2018, 70, 763-835.	7.1	163
7	Antitumor effects of somatostatin. Molecular and Cellular Endocrinology, 2008, 286, 230-237.	1.6	156
8	Molecular Signaling of Somatostatin Receptors. Annals of the New York Academy of Sciences, 2004, 1014, 121-131.	1.8	138
9	Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 155-160.	3.3	117
10	Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Molecular Cancer Therapeutics, 2009, 8, 809-820.	1.9	117
11	Antiproliferative Effect of Somatostatin and Analogs. Chemotherapy, 2001, 47, 30-39.	0.8	111
12	Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110α. Genes and Development, 2014, 28, 2621-2635.	2.7	108
13	Netrin-1 Mediates Early Events in Pancreatic Adenocarcinoma Progression, Acting on Tumor and Endothelial Cells. Gastroenterology, 2010, 138, 1595-1606.e8.	0.6	102
14	Hypoxia Induces VEGF-C Expression in Metastatic Tumor Cells via a HIF-1α-Independent Translation-Mediated Mechanism. Cell Reports, 2014, 6, 155-167.	2.9	102
15	sst2 Somatostatin Receptor Mediates Negative Regulation of Insulin Receptor Signaling through the Tyrosine Phosphatase SHP-1. Journal of Biological Chemistry, 1998, 273, 7099-7106.	1.6	99
16	Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. Journal of Clinical Investigation, 1999, 104, 1277-1285.	3.9	96
17	Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-neuroendocrine interfacing. Journal of Clinical Investigation, 2000, 106, 1417-1425.	3.9	95
18	Signal transduction of somatostatin receptors negatively controlling cell proliferation. Journal of Physiology (Paris), 2000, 94, 205-210.	2.1	93

#	Article	IF	CITATIONS
19	Pituitary Corticotroph SOCS-3: Novel Intracellular Regulation of Leukemia-Inhibitory Factor-Mediated Proopiomelanocortin Gene Expression and Adrenocorticotropin Secretion. Molecular Endocrinology, 1998, 12, 954-961.	3.7	79
20	Current Scientific Rationale for the Use of Somatostatin Analogs and mTOR Inhibitors in Neuroendocrine Tumor Therapy. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 727-737.	1.8	79
21	Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer. Gut, 2019, 68, 693-707.	6.1	79
22	Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway. EMBO Journal, 2006, 25, 3943-3954.	3.5	76
23	A Common Pro-opiomelanocortin-binding Element Mediates Leukemia Inhibitory Factor and Corticotropin-releasing Hormone Transcriptional Synergy. Journal of Biological Chemistry, 1997, 272, 10551-10557.	1.6	65
24	Critical Role for STAT3 in Murine Pituitary Adrenocorticotropin Hormone Leukemia Inhibitory Factor Signaling. Journal of Biological Chemistry, 1999, 274, 10723-10730.	1.6	55
25	Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy?. Cancers, 2021, 13, 3466.	1.7	55
26	4E-BP1 is a target of Smad4 essential for TGFβ-mediated inhibition of cell proliferation. EMBO Journal, 2009, 28, 3514-3522.	3.5	54
27	<scp>FAK</scp> activity in cancerâ€essociated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Molecular Medicine, 2020, 12, e12010.	3.3	54
28	Somatostatin analogs: does pharmacology impact antitumor efficacy?. Trends in Endocrinology and Metabolism, 2014, 25, 115-127.	3.1	50
29	Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. International Journal of Molecular Sciences, 2019, 20, 4719.	1.8	48
30	Targeting the NRG1/HER3 pathway in tumor cells and cancer-associated fibroblasts with an anti-neuregulin 1 antibody inhibits tumor growth in pre-clinical models of pancreatic cancer. Cancer Letters, 2018, 432, 227-236.	3.2	37
31	Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16. Gastroenterology, 2015, 148, 1452-1465.	0.6	36
32	Anti-metastatic potential of somatostatin analog SOM230: Indirect pharmacological targeting of pancreatic cancer-associated fibroblasts. Oncotarget, 0, 7, 41584-41598.	0.8	36
33	NAD(P)H Quinone-Oxydoreductase 1 Protects Eukaryotic Translation Initiation Factor 4Gl from Degradation by the Proteasome. Molecular and Cellular Biology, 2010, 30, 1097-1105.	1.1	34
34	Thrombospondin-1 is a critical effector of oncosuppressive activity of sst2 somatostatin receptor on pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17769-17774.	3.3	33
35	A Switch of G Protein-Coupled Receptor Binding Preference from Phosphoinositide 3-Kinase (PI3K)–p85 to Filamin A Negatively Controls the PI3K Pathway. Molecular and Cellular Biology, 2012, 32, 1004-1016.	1.1	32
36	Pituitary Corticotroph SOCS-3: Novel Intracellular Regulation of Leukemia-Inhibitory Factor-Mediated Proopiomelanocortin Gene Expression and Adrenocorticotropin Secretion. Molecular Endocrinology, 1998, 12, 954-961.	3.7	31

CORINNE BOUSQUET

#	Article	IF	CITATIONS
37	Somatostatin receptors as tools for diagnosis and therapy: Molecular aspects. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2005, 19, 535-551.	1.0	30
38	4E-BP restrains elF4E phosphorylation. Translation, 2013, 1, e25819.	2.9	27
39	The GLP1R Agonist Liraglutide Reduces Hyperglucagonemia Induced by the SGLT2 Inhibitor Dapagliflozin via Somatostatin Release. Cell Reports, 2019, 28, 1447-1454.e4.	2.9	25
40	elF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer. JCI Insight, 2019, 4, .	2.3	25
41	Cancer-Associated Fibroblasts: Accomplices in the Tumor Immune Evasion. Cancers, 2020, 12, 2969.	1.7	21
42	Pharmacologic Normalization of Pancreatic Cancer-Associated Fibroblast Secretome Impairs Prometastatic Cross-Talk With Macrophages. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1405-1436.	2.3	21
43	Transfection of Pancreatic-Derived β-Cells with a Minigene Encoding for Human Glucagon-Like Peptide-1 Regulates Glucose-Dependent Insulin Synthesis and Secretion. Endocrinology, 2002, 143, 3529-3539.	1.4	20
44	Contribution of HIF-1α in <i>4E-BP1</i> Gene Expression. Molecular Cancer Research, 2013, 11, 54-61.	1.5	19
45	Control of contact-inhibition by 4E-BP1 upregulation. Cell Cycle, 2010, 9, 1241-1245.	1.3	14
46	Changes in Translational Control after Pro-Apoptotic Stress. International Journal of Molecular Sciences, 2013, 14, 177-190.	1.8	13
47	Differential Regulation of the Three Eukaryotic mRNA Translation Initiation Factor (eIF) 4Gs by the Proteasome. Frontiers in Genetics, 2019, 10, 254.	1.1	10
48	New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology, 2021, 161, 785-791.	0.6	5
49	Focal Adhesion Kinase: A promising therapeutic target in pancreatic adenocarcinoma. Clinics and Research in Hepatology and Gastroenterology, 2017, 41, 246-248.	0.7	4
50	Pancreatic cancer cell invasion: mesenchymal switch or just hitchhiking?. Translational Cancer Research, 2016, 5, S1093-S1097.	0.4	4
51	Identification of two cancer-associated fibroblast markers revealing stromal heterogeneity in sustaining cancer progression and chemoresistance. Translational Cancer Research, 2018, 7, S718-S721.	0.4	3
52	Phosphorylation of the MNK1 substrate elF4E is not required for response to acute pancreatitis. Pancreatology, 2021, 21, 677-681.	0.5	2
53	Imbalanced splicing in MAPK signaling sustains Ras-induced transformation. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 155-156.	0.7	1
54	Somatostatin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1

#	Article	IF	CITATIONS
55	Somatostatin Receptor Signaling via Protein Tyrosine Phosphatases. , 2004, , 159-167.		Ο
56	Inflammation triggers and sustains a pathological threshold of Ras activity necessary to induce pancreatic tumorigenesis. Clinics and Research in Hepatology and Gastroenterology, 2012, 36, 527-529.	0.7	0
57	Abstract 3149: 4E-BP1 loss of function in pancreatic carcinogenesis. , 2010, , .		Ο
58	Abstract B16: Progastrin activates colon fibroblasts and participates to the dialogue between tumor epithelial cells and stromal fibroblasts in colorectal cancer. , 2015, , .		0
59	Abstract 402: Pasireotide reduces chemoresistance in pancreatic tumor cells by inhibiting the synthesis and secretion of growth factors from tumor associated fibroblasts. , 2015, , .		0