Charikleia Karakosta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593032/publications.pdf

Version: 2024-02-01

361296 360920 1,361 58 20 35 citations h-index g-index papers 61 61 61 1309 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Risks and mitigation strategies in energy efficiency financing: A systematic literature review. Energy Reports, 2022, 8, 1789-1802.	2.5	13
2	A Multicriteria Tool to Support Decision-Making in the Early Stages of Energy Efficiency Investments. Lecture Notes in Business Information Processing, 2022, , 190-202.	0.8	3
3	Financial schemes for energy efficiency projects: lessons learnt from in-country demonstrations. , 2021, , 55-78.		8
4	Leveraging Energy Efficiency Investments: An Innovative Web-based Benchmarking Tool. Advances in Science, Technology and Engineering Systems, 2021, 6, 237-248.	0.4	7
5	Tackling covid-19 crisis through energy efficiency investments: Decision support tools for economic recovery. Energy Strategy Reviews, 2021, 38, 100764.	3.3	22
6	Financing Sustainable Energy Efficiency Projects: The Triple-A Case. Environmental Sciences Proceedings, 2021, 11, 22.	0.3	5
7	Scaling Up and Intensifying Stakeholders Engagement for Evidence-Based Policymaking: Lessons Learned. , 2020, , 773-782.		4
8	An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation. Sustainability, 2020, 12, 2886.	1.6	41
9	De-Risking Energy Efficiency Investments through Innovation. Proceedings (mdpi), 2020, 65, 3.	0.2	11
10	Linking Stakeholder Engagement to Multiple Future Policies in the European Energy Sector. Advances in Finance, Accounting, and Economics, 2020, , 383-392.	0.3	2
11	Supporting Europe's Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment. Sustainability, 2019, 11, 4010.	1.6	16
12	Impact Assessment of Climate and Energy Policy Scenarios: A Multi-criteria Approach. , 2019, , 123-142.		1
13	Identification of climate policy knowledge needs: a stakeholders consultation approach. International Journal of Climate Change Strategies and Management, 2018, 10, 772-795.	1.5	7
14	Analysis of policy scenarios for achieving renewable energy sources targets: A fuzzy TOPSIS approach. Energy and Environment, 2017, 28, 88-109.	2.7	33
15	Renewable energy policy dialogue towards 2030 – Editorial of the special issue. Energy and Environment, 2017, 28, 5-10.	2.7	1
16	Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment. Renewable and Sustainable Energy Reviews, 2017, 80, 519-530.	8.2	22
17	Managing Climate Policy Information Facilitating Knowledge Transfer to Policy Makers. Energies, 2016, 9, 454.	1.6	7
18	A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change. Energies, 2016, 9, 503.	1.6	14

#	Article	IF	CITATIONS
19	Assessment of RES cooperation framework between the EU and North Africa. International Journal of Energy Sector Management, 2016, 10, 402-426.	1.2	12
20	Understanding the absence of renewable electricity imports to the European Union. International Journal of Energy Sector Management, 2016, 10, 291-311.	1.2	13
21	Investigating EU-Turkey renewable cooperation opportunities: a SWOT analysis. International Journal of Energy Sector Management, 2016, 10, 337-362.	1.2	7
22	Expanding RES cooperation with West Balkans: from importing electricity to exporting RES. International Journal of Energy Sector Management, 2016, 10, 363-380.	1.2	4
23	How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation. Renewable and Sustainable Energy Reviews, 2015, 44, 785-796.	8.2	70
24	RES cooperation opportunities between EU and MENA countries: The case of Morocco. Energy Strategy Reviews, 2013, 2, 92-99.	3.3	11
25	Renewable energy and nuclear power towards sustainable development: Characteristics and prospects. Renewable and Sustainable Energy Reviews, 2013, 22, 187-197.	8.2	120
26	Understanding CDM potential in the Mediterranean basin: A country assessment of Egypt and Morocco. Energy Policy, 2013, 60, 827-839.	4.2	14
27	An integrated system for buildings' energy-efficient automation: Application in the tertiary sector. Applied Energy, 2013, 101, 6-14.	5.1	123
28	A building automation and control tool for remote and real time monitoring of energy consumption. Sustainable Cities and Society, 2013, 6, 11-15.	5.1	45
29	Does the CDM offer sustainable development benefits or not?. International Journal of Sustainable Development and World Ecology, 2013, 20, 1-8.	3.2	17
30	Building synergies between EU and GCC on energy efficiency. International Journal of Energy Sector Management, 2013, 7, 6-28.	1.2	6
31	Carbon market and technology transfer: statistical analysis for exploring implications. International Journal of Sustainable Development and World Ecology, 2012, 19, 311-320.	3.2	8
32	Analysis of renewable energy progress in the western Balkan countries: Bosnia–Herzegovina and Serbia. Renewable and Sustainable Energy Reviews, 2012, 16, 5166-5175.	8.2	46
33	A comparison of electricity production technologies in terms of sustainable development. Energy Conversion and Management, 2012, 64, 626-632.	4.4	35
34	Promoting renewables in the energy sector of Tajikistan. Renewable Energy, 2012, 39, 411-418.	4.3	23
35	Decision support for assessing demand side management programmes. International Journal of Multicriteria Decision Making, 2011, 1, 155.	0.1	3
36	CDM sustainable technology transfer grounded in participatory in-country processes in Israel. International Journal of Sustainable Society, 2011, 3, 225.	0.0	10

#	Article	IF	Citations
37	Graph theoryâ€based approach for energy corridors network to Greece. International Journal of Energy Sector Management, 2011, 5, 60-80.	1.2	11
38	Electric power transmission: An overview of associated burdens. International Journal of Energy Research, 2011, 35, 979-988.	2.2	42
39	The potential role of renewable energy in Moldova. Renewable Energy, 2011, 36, 3550-3557.	4.3	4
40	Web tool for the quantification of oil and gas corridors' socioâ€economic risks. International Journal of Energy Sector Management, 2010, 4, 213-235.	1.2	17
41	Sustainable energy technology transfers through the CDM? Application of participatory approaches for decision making facilitation. International Journal of Environmental Policy and Decision Making, 2010, 1, 1.	0.1	10
42	Establishment of a European energy policy think-tank: necessity or luxury?. International Journal of Global Energy Issues, 2010, 33, 221.	0.2	8
43	EU–MENA energy technology transfer under the CDM: Israel as a frontrunner?. Energy Policy, 2010, 38, 2455-2462.	4.2	23
44	Technology transfer through climate change: Setting a sustainable energy pattern. Renewable and Sustainable Energy Reviews, 2010, 14, 1546-1557.	8.2	78
45	Computing with words to assess the sustainability of renewable energy options. Expert Systems With Applications, 2010, 37, 5491-5497.	4.4	147
46	Developing countries' energy needs and priorities under a sustainable development perspective: A linguistic decision support approach. Energy for Sustainable Development, 2010, 14, 330-338.	2.0	33
47	Setting Technology Transfer Priorities with CDM-SET. , 2010, , 205-222.		0
48	Intelligent Information Systems for Strengthening the Quality of Energy Services in the EU. , 2010, , 423-437.		0
49	A linguistic TOPSIS model to evaluate the sustainability of renewable energy options. International Journal of Global Energy Issues, 2009, 32, 102.	0.2	22
50	Directing clean development mechanism towards developing countries' sustainable development priorities. Energy for Sustainable Development, 2009, 13, 77-84.	2.0	49
51	Sustainable energy technologies in Israel under the CDM: Needs and prospects. Renewable Energy, 2009, 34, 1399-1406.	4.3	13
52	RES technology transfer within the new climate regime: A "helicopter―view under the CDM. Renewable and Sustainable Energy Reviews, 2009, 13, 1138-1143.	8.2	58
53	Energy RTD expenditures in the European union: Data gathering procedures and results towards a scientific reference system. Applied Energy, 2009, 86, 452-459.	5.1	11
54	Facilitating sustainable development in Chile: a survey of suitable energy technologies. International Journal of Sustainable Development and World Ecology, 2009, 16, 322-331.	3.2	11

#	Article	IF	CITATIONS
55	Shaping sustainable development strategies in Chile through CDM. International Journal of Climate Change Strategies and Management, 2009, 1, 382-399.	1.5	9
56	A Decision Support Approach for the Sustainable Transfer of Energy Technologies under the Kyoto Protocol. American Journal of Applied Sciences, 2008, 5, 1720-1729.	0.1	27
57	EU—GCC Clean Energy Cooperation. , 0, , 288-308.		2
58	EU—GCC Clean Energy Cooperation. , 0, , 221-241.		0