JérÃ'me Ã"me Duminil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3592996/publications.pdf

Version: 2024-02-01

47 papers

3,157 citations

331670 21 h-index 243625 44 g-index

49 all docs

49 docs citations

49 times ranked 4159 citing authors

#	Article	IF	Citations
1	The Architectural Unit Setting up and Architectural Characteristics of Néré, <l>Parkia biglobosa, Jack, R. Br. (Fabaceae). American Journal of Plant Sciences, 2022, 13, 109-136.</l>	0.8	O
2	Effect of the seeds provenance and treatment on the germination rate and plants growth of four forest trees species of Côte d'Ivoire. Journal of Forestry Research, 2021, 32, 161-169.	3.6	11
3	The Effect of Four Abiotic Factors on Macro-Anatomical Markers Development in <i>Parkia biglobosa</i> , Jack, R. Br., 1830 (Fabaceae) Crown. American Journal of Plant Sciences, 2021, 12, 645-661.	0.8	1
4	Trees and their seed networks: The social dynamics of urban fruit trees and implications for genetic diversity. PLoS ONE, 2021, 16, e0243017.	2.5	10
5	Utility of the Mitochondrial Genome in Plant Taxonomic Studies. Methods in Molecular Biology, 2021, 2222, 107-118.	0.9	19
6	Shifting perceptions, preferences and practices in the African fruit trade: the case of African plum (Dacryodes edulis) in different cultural and urbanization contexts in Cameroon. Journal of Ethnobiology and Ethnomedicine, 2021, 17, 65.	2.6	5
7	Ethnicity Differences in Uses and Management Practices of Bitter Kola Trees (Garcinia kola) in Cameroon. Economic Botany, 2020, 74, 429-444.	1.7	7
8	Microsatellite markers development for Indonesian nutmeg (Myristica fragrans Houtt.) and transferability to other Myristicaceae spp Molecular Biology Reports, 2020, 47, 4835-4840.	2.3	3
9	Population genomics of the widespread African savannah treesAfzelia africanaandAfzelia quanzensisreveals no significant past fragmentation of their distribution ranges. American Journal of Botany, 2020, 107, 498-509.	1.7	6
10	Fineâ€scale spatial genetic structure, mating, and gene dispersal patterns in <i>Parkia biglobosa</i> populations with different levels of habitat fragmentation. American Journal of Botany, 2020, 107, 1041-1053.	1.7	8
11	New microsatellite markers for Dacryodes edulis (Burseraceae), an indigenous fruit tree species from Central Africa. Molecular Biology Reports, 2020, 47, 2391-2396.	2.3	6
12	Influence of Different Environments on Germination Parameters and Seedling Morphology in & Liping amp; amp; amp; amp; amp; amp; amp; amp;	0.8	3
13	Phylogenetic relationships in two African Cedreloideae tree genera (Meliaceae) reveal multiple rain/dry forest transitions. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 37, 1-10.	2.7	13
14	Comparative analysis of two sister Erythrophleum species (Leguminosae) reveal contrasting transcriptome-wide responses to early drought stress. Gene, 2019, 694, 50-62.	2.2	2
15	Seed and pollen dispersal distances in two African legume timber trees and their reproductive potential under selective logging. Molecular Ecology, 2019, 28, 3119-3134.	3.9	18
16	The Influence of Farmers' Strategies on Local Practices, Knowledge, and Varietal Diversity of the Safou Tree (Dacryodes edulis) in Western Cameroon. Economic Botany, 2019, 73, 249-264.	1.7	8
17	Ecological niche divergence associated with species and populations differentiation in Erythrophleum (Fabaceae, Caesalpinioideae). Plant Ecology and Evolution, 2019, 152, 41-52.	0.7	5
18	Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey. Conservation Letters, 2018, 11, e12424.	5.7	71

#	Article	IF	CITATIONS
19	The African timber tree Entandrophragma congoense (Pierre ex De Wild.) A.Chev. is morphologically and genetically distinct from Entandrophragma angolense (Welw.) C.DC. Tree Genetics and Genomes, 2018, 14, 1.	1.6	11
20	A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon, 2017, 66, 44-77.	0.7	803
21	Characterization of Microsatellite Markers in Two Exploited African Trees, Entandrophragma candolleiand E. utile (Meliaceae). Applications in Plant Sciences, 2017, 5, 1600130.	2.1	4
22	Extensive seed and pollen dispersal and assortative mating in the rain forest tree <i><scp>E</scp>ntandrophragma cylindricum</i> (Meliaceae) inferred from indirect and direct analyses. Molecular Ecology, 2017, 26, 5279-5291.	3.9	30
23	Evolution in African tropical trees displaying ploidy-habitat association: The genus Afzelia (Leguminosae). Molecular Phylogenetics and Evolution, 2017, 107, 270-281.	2.7	32
24	Microsatellite Development for the GenusGuibourtia(Fabaceae, Caesalpinioideae) Reveals Diploid and Polyploid Species. Applications in Plant Sciences, 2016, 4, 1600029.	2.1	4
25	Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests. Heredity, 2016, 116, 295-303.	2.6	39
26	Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. Journal of Biogeography, 2015, 42, 1443-1454.	3.0	54
27	Congruent phylogeographical patterns of eight tree species in Atlantic Central Africa provide insights into the past dynamics of forest cover. Molecular Ecology, 2014, 23, 2299-2312.	3.9	35
28	Mitochondrial Genome and Plant Taxonomy. Methods in Molecular Biology, 2014, 1115, 121-140.	0.9	11
29	Comparative Phylogeography in Rainforest Trees from Lower Guinea, Africa. PLoS ONE, 2014, 9, e84307.	2.5	36
30	Comparative phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus - Geoscience, 2013, 345, 284-296.	1.2	94
31	Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae). BMC Evolutionary Biology, 2013, 13, 195.	3.2	38
32	How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?. PLoS ONE, 2013, 8, e54921.	2.5	81
33	Characterization of new microsatellite loci isolated from <i>Santiria trimera</i> (Burseraceae). American Journal of Botany, 2012, 99, e334-6.	1.7	3
34	Testing species delimitation in sympatric species complexes: The case of an African tropical tree, Carapa spp. (Meliaceae). Molecular Phylogenetics and Evolution, 2012, 62, 275-285.	2.7	68
35	Isolation of SSR markers for two African tropical tree species, <i>Erythrophleum suaveolens</i> and <i>E. ivorense</i> (Caesalpinioideae). American Journal of Botany, 2011, 98, e106-8.	1.7	9
36	Chloroplast DNA Polymorphism and Phylogeography of a Central African Tree Species Widespread in Mature Rainforests: Greenwayodendron suaveolens (Annonaceae). Tropical Plant Biology, 2010, 3, 4-13.	1.9	31

#	Article	IF	CITATIONS
37	CpDNA-based species identification and phylogeography: application to African tropical tree species. Molecular Ecology, 2010, 19, 5469-5483.	3.9	38
38	Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology, 2009, 9, 177.	3.2	161
39	Plant species delimitation: A comparison of morphological and molecular markers. Plant Biosystems, 2009, 143, 528-542.	1.6	130
40	Multilevel Control of Organelle DNA Sequence Length in Plants. Journal of Molecular Evolution, 2008, 66, 405-415.	1.8	6
41	Can Population Genetic Structure Be Predicted from Lifeâ€History Traits?. American Naturalist, 2007, 169, 662-672.	2.1	235
42	Blind population genetics survey of tropical rainforest trees. Molecular Ecology, 2006, 15, 3505-3513.	3.9	63
43	Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. Journal of Biogeography, 2005, 32, 329-339.	3.0	67
44	INVITED REVIEW: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 2004, 14, 689-701.	3.9	790
45	A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes, 2002, 2, 428-430.	1.7	83
46	Bopopia, a new monotypic genus of Gesneriaceae (Gesnerioideae, Coronanthereae) from New Caledonia. European Journal of Taxonomy, 0, 736, 82-101.	0.6	2
47	Allometric models for non-destructive estimation of dry biomass and leaf area in Khaya senegalensis (Desr.) A. Juss., 1830 (Meliaceae), Pterocarpus erinaceus Poir., 1804 (Fabaceae) and Parkia biglobosa, Jack, R. Br., 1830 (Fabaceae). Trees - Structure and Function, 0, , 1.	1.9	2