Christine Beeton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3592885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Syndecan-2 regulates PAD2 to exert antifibrotic effects on RA-ILD fibroblasts. Scientific Reports, 2022, 12, 2847.	1.6	4
2	Kv1.3 Channel Up-Regulation in Peripheral Blood T Lymphocytes of Patients With Multiple Sclerosis. Frontiers in Pharmacology, 2021, 12, 714841.	1.6	3
3	Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis. Antioxidants, 2020, 9, 1005.	2.2	3
4	Modulation of Lymphocyte Potassium Channel K _V 1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacology and Translational Science, 2020, 3, 720-736.	2.5	18
5	AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9. Molecular Therapy, 2020, 28, 1432-1441.	3.7	140
6	Inhibition of Upf2-Dependent Nonsense-Mediated Decay Leads to Behavioral and Neurophysiological Abnormalities by Activating the Immune Response. Neuron, 2019, 104, 665-679.e8.	3.8	43
7	KCa1.1 and Kv1.3 channels regulate the interactions between fibroblast-like synoviocytes and T lymphocytes during rheumatoid arthritis. Arthritis Research and Therapy, 2019, 21, 6.	1.6	19
8	Targeting KCa1.1 Channels with a Scorpion Venom Peptide for the Therapy of Rat Models of Rheumatoid Arthritis. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 227-236.	1.3	20
9	Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation, 2018, 138, 2227-2242.	1.6	376
10	Differences in ion channel phenotype and function between humans and animal models. Frontiers in Bioscience - Landmark, 2018, 23, 43-64.	3.0	34
11	KCa1.1 channels regulate β ₁ â€integrin function and cell adhesion in rheumatoid arthritis fibroblastâ€like synoviocytes. FASEB Journal, 2017, 31, 3309-3320.	0.2	22
12	Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog. Clinical Immunology, 2017, 180, 45-57.	1.4	50
13	Detection of Matrix Metalloproteinases by Zymography. Methods in Molecular Biology, 2017, 1579, 231-244.	0.4	35
14	KCa1.1 channels as therapeutic targets for rheumatoid arthritis. Expert Opinion on Therapeutic Targets, 2017, 21, 1077-1081.	1.5	8
15	Distribution and kinetics of the Kv1.3-blocking peptide HsTX1[R14A] in experimental rats. Scientific Reports, 2017, 7, 3756.	1.6	15
16	Changes in Gene Expression and Metabolism in the Testes of the Rat following Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1175-1186.	1.7	7
17	Characterization of a novel MRâ€detectable nanoantioxidant that mitigates the recall immune response. NMR in Biomedicine, 2016, 29, 1436-1444	1.6	5
18	Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Scientific Reports, 2016, 6, 33808.	1.6	32

#	Article	IF	CITATIONS
19	Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. Cell Death and Disease, 2016, 7, e2426-e2426.	2.7	19
20	Different expression of \hat{l}^2 subunits of the KCa1.1 channel by invasive and non-invasive human fibroblast-like synoviocytes. Arthritis Research and Therapy, 2016, 18, 103.	1.6	21
21	Antigenic sites on the HN domain of botulinum neurotoxin A stimulate protective antibody responses against active toxin. Scientific Reports, 2015, 5, 15776.	1.6	12
22	Development of Highly Selective Kv1.3-Blocking Peptides Based on the Sea Anemone Peptide ShK. Marine Drugs, 2015, 13, 529-542.	2.2	55
23	CHAPTER 10. Case Study 2: Transforming a Toxin into a Therapeutic: theÂSea Anemone Potassium Channel Blocker ShK Toxin for Treatment of Autoimmune Diseases. RSC Drug Discovery Series, 2015, , 255-274.	0.2	7
24	Nâ€terminally extended analogues of the K ⁺ channel toxin from <i>StichodactylaÂhelianthus</i> as potent and selective blockers of the voltageâ€gated potassium channel Kv1.3. FEBS Journal, 2015, 282, 2247-2259.	2.2	26
25	The cation channel Trpv2 is a new suppressor of arthritis severity, joint damage, and synovial fibroblast invasion. Clinical Immunology, 2015, 158, 183-192.	1.4	33
26	Ca2+ permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca2+ signaling to sustain muscle function. Skeletal Muscle, 2015, 5, 4.	1.9	43
27	KCa1.1 Inhibition Attenuates Fibroblastâ€ŀike Synoviocyte Invasiveness and Ameliorates Disease in Rat Models of Rheumatoid Arthritis. Arthritis and Rheumatology, 2015, 67, 96-106.	2.9	29
28	Ion channels and anti-cancer immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130106.	1.8	50
29	Kv1.3 channelâ€blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB Journal, 2014, 28, 3952-3964.	0.2	76
30	Blocking KV1.3 Channels Inhibits Th2 Lymphocyte Function and Treats a Rat Model of Asthma. Journal of Biological Chemistry, 2014, 289, 12623-12632.	1.6	58
31	Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. International Immunopharmacology, 2014, 22, 427-443.	1.7	74
32	A potent and Kv1.3-selective analogue of the scorpion toxin HsTX1 as a potential therapeutic for autoimmune diseases. Scientific Reports, 2014, 4, 4509.	1.6	73
33	Small cell lung cancer cells express the late stage gBK tumor antigen: a possible immunotarget for the terminal disease. American Journal of Translational Research (discontinued), 2014, 6, 188-205.	0.0	11
34	Targets and Therapeutic Properties. , 2013, , 473-482.		10
35	A Potent and Selective Peptide Blocker of the Kv1.3 Channel: Prediction from Free-Energy Simulations and Experimental Confirmation. PLoS ONE, 2013, 8, e78712.	1.1	58
36	Blocking KCa3.1 Channels Increases Tumor Cell Killing by a Subpopulation of Human Natural Killer Lymphocytes. PLoS ONE, 2013, 8, e76740.	1.1	45

#	Article	IF	CITATIONS
37	KCa1.1 Potassium Channels Regulate Key Proinflammatory and Invasive Properties of Fibroblast-like Synoviocytes in Rheumatoid Arthritis. Journal of Biological Chemistry, 2012, 287, 4014-4022.	1.6	43
38	Vm24, a Natural Immunosuppressive Peptide, Potently and Selectively Blocks Kv1.3 Potassium Channels of Human T Cells. Molecular Pharmacology, 2012, 82, 372-382.	1.0	83
39	A Câ€ŧerminally amidated analogue of ShK is a potent and selective blocker of the voltageâ€gated potassium channel Kv1.3. FEBS Letters, 2012, 586, 3996-4001.	1.3	41
40	Expression and isotopic labelling of the potassium channel blocker ShK toxin as a thioredoxin fusion protein in bacteria. Toxicon, 2012, 60, 840-850.	0.8	23
41	Durable Pharmacological Responses from the Peptide ShK-186, a Specific Kv1.3 Channel Inhibitor That Suppresses T Cell Mediators of Autoimmune Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 642-653.	1.3	105
42	Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon, 2012, 59, 529-546.	0.8	203
43	Recombinant Expression of Margatoxin and Agitoxin-2 in Pichia pastoris: An Efficient Method for Production of KV1.3 Channel Blockers. PLoS ONE, 2012, 7, e52965.	1.1	24
44	Potassium channels on natural killer cells in the presence of breast carcinoma cells. FASEB Journal, 2012, 26, 966.4.	0.2	0
45	The role of SOD $\hat{s}\in 2$ in a mouse model of multiple sclerosis. FASEB Journal, 2012, 26, 136.11.	0.2	0
46	Targeting Potassium Channels On Fibroblastâ€like Synoviocytes For The Treatment Of Pristane Induced Arthritis In A Rat Model. FASEB Journal, 2012, 26, 1119.6.	0.2	0
47	Analogs of the Sea Anemone Potassium Channel Blocker ShK for the Treatment of Autoimmune Diseases. Inflammation and Allergy: Drug Targets, 2011, 10, 313-321.	1.8	83
48	Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nature Communications, 2011, 2, 334.	5.8	142
49	Quantitative Measurement of GLUT4 Translocation to the Plasma Membrane by Flow Cytometry. Journal of Visualized Experiments, 2010, , .	0.2	14
50	Detection of Functional Matrix Metalloproteinases by Zymography. Journal of Visualized Experiments, 2010, , .	0.2	77
51	Imaging of Effector Memory T Cells during a Delayed-Type Hypersensitivity Reaction and Suppression by Kv1.3 Channel Block. Immunity, 2008, 29, 602-614.	6.6	197
52	The D-Diastereomer of ShK Toxin Selectively Blocks Voltage-gated K+ Channels and Inhibits T Lymphocyte Proliferation. Journal of Biological Chemistry, 2008, 283, 988-997.	1.6	54
53	Imaging Effector Memory T cells in the Ear After Induction of Adoptive DTH. Journal of Visualized Experiments, 2008, , .	0.2	2
54	Drawing Blood from Rats through the Saphenous Vein and by Cardiac Puncture. Journal of Visualized Experiments, 2007, , 266.	0.2	30

#	Article	IF	CITATIONS
55	Isolation of Mononuclear Cells from the Central Nervous System of Rats with EAE. Journal of Visualized Experiments, 2007, , 527.	0.2	16
56	Induction and Monitoring of Active Delayed Type Hypersensitivity (DTH) in Rats. Journal of Visualized Experiments, 2007, , 237.	0.2	13
57	Induction and Clinical Scoring of Chronic-Relapsing Experimental Autoimmune Encephalomyelitis. Journal of Visualized Experiments, 2007, , 224.	0.2	18
58	Enrichment of NK Cells from Human Blood with the RosetteSep Kit from StemCell Technologies. Journal of Visualized Experiments, 2007, , 326.	0.2	6
59	Induction and Monitoring of Adoptive Delayed-Type Hypersensitivity in Rats. Journal of Visualized Experiments, 2007, , .	0.2	13
60	Preparing T Cell Growth Factor from Rat Splenocytes. Journal of Visualized Experiments, 2007, , 402.	0.2	13
61	Live imaging of effector memory T cells at a site of inflammation –a Kv1.3 blocker suppresses T cell motility. FASEB Journal, 2007, 21, A770.	0.2	Ο
62	Discovery on Target 2007CHI's Fifth Annual Conference. Ion channels. IDrugs: the Investigational Drugs Journal, 2007, 10, 851-4.	0.7	0
63	Targets and Therapeutic Properties of Venom Peptides. , 2006, , 403-414.		3
64	Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17414-17419.	3.3	470
65	The impact of the fourth disulfide bridge in scorpion toxins of the α-KTx6 subfamily. Proteins: Structure, Function and Bioinformatics, 2005, 61, 1010-1023.	1.5	21
66	Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases. Molecular Pharmacology, 2005, 67, 1369-1381.	1.0	232
67	The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11094-11099.	3.3	172
68	Potassium Channels, Memory T Cells, and Multiple Sclerosis. Neuroscientist, 2005, 11, 550-562.	2.6	96
69	Evidence for Domain-specific Recognition of SK and Kv Channels by MTX and HsTx1 Scorpion Toxins. Journal of Biological Chemistry, 2004, 279, 55690-55696.	1.6	51
70	Kv1.3-Blocking 5-Phenylalkoxypsoralens: A New Class of Immunomodulators. Molecular Pharmacology, 2004, 65, 1364-1374.	1.0	126
71	K+ channels as targets for specific immunomodulation. Trends in Pharmacological Sciences, 2004, 25, 280-289.	4.0	404
72	A Novel Fluorescent Toxin to Detect and Investigate Kv1.3 Channel Up-regulation in Chronically Activated T Lymphocytes. Journal of Biological Chemistry, 2003, 278, 9928-9937.	1.6	80

#	Article	IF	CITATIONS
73	Myelin basic protein-reactive T cells induce conduction failure in vivo but not in vitro. NeuroReport, 2003, 14, 317-320.	0.6	8
74	The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. Journal of Clinical Investigation, 2003, 111, 1703-1713.	3.9	368
75	The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. Journal of Clinical Investigation, 2003, 112, 298-298.	3.9	1
76	Potassium channels as therapeutic targets for autoimmune disorders. Current Opinion in Drug Discovery & Development, 2003, 6, 640-7.	1.9	60
77	Selective Blocking of Voltage-Gated K+ Channels Improves Experimental Autoimmune Encephalomyelitis and Inhibits T Cell Activation. Journal of Immunology, 2001, 166, 936-944.	0.4	180