Meriem Lamghari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3592825/publications.pdf

Version: 2024-02-01

218592 265120 58 1,862 26 42 citations g-index h-index papers 59 59 59 2568 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Calcium Signalling in Breast Cancer Associated Bone Pain. International Journal of Molecular Sciences, 2022, 23, 1902.	1.8	5
2	A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Materials Today Bio, 2022, 13, 100219.	2.6	17
3	Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Advanced Healthcare Materials, 2022, 11, e2102305.	3.9	14
4	Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We?. Frontiers in Immunology, 2022, 13, 802440.	2.2	6
5	The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Frontiers in Immunology, 2022, 13, 812962.	2.2	9
6	Stress in Metastatic Breast Cancer: To the Bone and Beyond. Cancers, 2022, 14, 1881.	1.7	9
7	Microfluidic-based models to address the bone marrow metastatic niche complexity. Seminars in Cell and Developmental Biology, 2021, 112, 27-36.	2.3	1
8	Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Research, 2021, 9, 9.	5.4	29
9	Polymeric Microspheres/Cells/Extracellular Matrix Constructs Produced by Auto-Assembly for Bone Modular Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 7897.	1.8	6
10	Bidirectional flow of action potentials in axons drives activity dynamics in neuronal cultures. Journal of Neural Engineering, 2021, 18, 066045.	1.8	11
11	Fluorescent H ₂ Receptor Squaramide-Type Antagonists: Synthesis, Characterization, and Applications. ACS Medicinal Chemistry Letters, 2020, 11, 1521-1528.	1.3	5
12	Determination of neuropeptide YY1 receptor antagonist BIBP 3226 and evaluation of receptor expression based on liquid chromatography coupled with tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 6625-6632.	1.9	2
13	Osteoblasts are inherently programmed to repel sensory innervation. Bone Research, 2020, 8, 20.	5.4	16
14	The lack of neuropeptide Y‥ 1 receptor signaling modulates the chemical and mechanical properties of bone matrix. FASEB Journal, 2020, 34, 4163-4177.	0.2	4
15	Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB Journal, 2020, 34, 5499-5511.	0.2	33
16	Exploring Poly(Ethylene Glycol)-Poly(Trimethylene Carbonate) Nanoparticles as Carriers of Hydrophobic Drugs to Modulate Osteoblastic Activity. Journal of Pharmaceutical Sciences, 2020, 109, 1594-1604.	1.6	4
17	Bone marrow cell response after injury and during early stage of regeneration is independent of the tissueâ€ofâ€injury in 2 injury models. FASEB Journal, 2019, 33, 857-872.	0.2	9
18	The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health. FASEB Journal, 2019, 33, 8697-8710.	0.2	11

#	Article	lF	Citations
19	$\hat{A}\mu Spike Hunter:$ An advanced computational tool for the analysis of neuronal communication and action potential propagation in microfluidic platforms. Scientific Reports, 2019, 9, 5777.	1.6	10
20	Gas-phase structural characterization of neuropeptides Y Y1 receptor antagonists using mass spectrometry: Orbitrap vs triple quadrupole. Journal of Pharmaceutical and Biomedical Analysis, 2018, 151, 227-234.	1.4	3
21	Neuroimmune expression in hip osteoarthritis: a systematic review. BMC Musculoskeletal Disorders, 2017, 18, 394.	0.8	10
22	Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Scientific Reports, 2017, 7, 5098.	1.6	38
23	N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Scientific Reports, 2017, 7, 17374.	1.6	50
24	Axonal outgrowth, neuropeptides expression and receptors tyrosine kinase phosphorylation in 3D organotypic cultures of adult dorsal root ganglia. PLoS ONE, 2017, 12, e0181612.	1.1	13
25	Therapeutic Drugs in Bone Loss-Associated Disorders: Clinical Outcomes and Challenges. Current Drug Targets, 2017, 18, 696-704.	1.0	0
26	Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways. PLoS ONE, 2016, 11, e0165465.	1.1	16
27	Fibrinogen scaffolds with immunomodulatory properties promote inÂvivo bone regeneration. Biomaterials, 2016, 111, 163-178.	5.7	54
28	Immune response and innervation signatures in aseptic hip implant loosening. Journal of Translational Medicine, 2016, 14, 205.	1.8	23
29	Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of <i>In Vitro </i> Tools for Neurobiological Research. Journal of Neuroscience, 2016, 36, 11573-11584.	1.7	104
30	Ablation of Y1 receptor impairs osteoclast bone-resorbing activity. Scientific Reports, 2016, 6, 33470.	1.6	21
31	The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials, 2016, 84, 262-275.	5.7	95
32	Fracture pain—Traveling unknown pathways. Bone, 2016, 85, 107-114.	1.4	34
33	Communication from the periphery to the hypothalamus through the blood–brain barrier: An in vitro platform. International Journal of Pharmaceutics, 2016, 499, 119-130.	2.6	8
34	Compartmentalized Microfluidic Platforms as Tool of Choice to Study the Interaction Between Neurons and Osteoblasts. Neuromethods, 2015, , 161-179.	0.2	1
35	Microfluidics co-culture systems for studying tooth innervation. Frontiers in Physiology, 2014, 5, 326.	1.3	40
36	Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integrative Biology (United Kingdom), 2014, 6, 586-595.	0.6	52

#	Article	IF	CITATIONS
37	Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response. Acta Biomaterialia, 2013, 9, 7209-7217.	4.1	46
38	Neuropeptide Y modulates fracture healing through Y ₁ receptor signaling. Journal of Orthopaedic Research, 2013, 31, 1570-1578.	1.2	28
39	Neuropeptide YY1 receptor antagonism increases bone mass in mice. Bone, 2012, 51, 8-16.	1.4	54
40	Neuropeptide Y expression and function during osteoblast differentiation – insights from transthyretin knockout mice. FEBS Journal, 2010, 277, 263-275.	2.2	35
41	Neuropeptide Y and osteoblast differentiation – the balance between the neuroâ€osteogenic network and local control. FEBS Journal, 2010, 277, 3664-3674.	2.2	47
42	Protein Matrices for Improved Wound Healing: Elastase Inhibition by a Synthetic Peptide Model. Biomacromolecules, 2010, 11, 2213-2220.	2.6	31
43	NPY revealed as a critical modulator of osteoblast function in vitro: New insights into the role of Y1 and Y2 receptors. Journal of Cellular Biochemistry, 2009, 107, 908-916.	1.2	75
44	NPY Signalling Pathway in Bone Homeostasis: Y1 Receptor as a Potential Drug Target. Current Drug Targets, 2009, 10, 9-19.	1.0	23
45	Osteoblast adhesion and morphology on TiO ₂ depends on the competitive preadsorption of albumin and fibronectin. Journal of Biomedical Materials Research - Part A, 2008, 84A, 281-290.	2.1	90
46	Greater Bone Formation of Y2 Knockout Mice Is Associated with Increased Osteoprogenitor Numbers and Altered Y1 Receptor Expression. Journal of Biological Chemistry, 2007, 282, 19082-19091.	1.6	128
47	Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. Journal of Cellular Biochemistry, 2006, 98, 1123-1129.	1.2	46
48	Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. Journal of Biomedical Materials Research Part B, 2005, 72A, 57-66.	3.0	53
49	Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: The effect of the degree of acetylation. Journal of Biomedical Materials Research - Part A, 2005, 75A, 387-397.	2.1	59
50	Biological evaluation of calcium alginate microspheres as a vehicle for the localized delivery of a therapeutic enzyme. Journal of Biomedical Materials Research - Part A, 2005, 74A, 545-552.	2.1	43
51	Recombinant glucocerebrosidase uptake by Gaucher disease human osteoblast culture model. Blood Cells, Molecules, and Diseases, 2005, 35, 348-354.	0.6	5
52	The Dualism of Nacre. Key Engineering Materials, 2004, 254-256, 733-736.	0.4	7
53	Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels. Journal of Biomedical Materials Research Part B, 2004, 68A, 584-596.	3.0	52
54	Conservation of signal molecules involved in biomineralisation control in calcifying matrices of bone and shell. Comptes Rendus - Palevol, 2004, 3, 493-501.	0.1	24

#	Article	IF	CITATION
55	Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials, 2001, 22, 555-562.	5.7	73
56	Arthrodesis of Lumbar Spine Transverse Processes Using Nacre in Rabbit. Journal of Bone and Mineral Research, 2001, 16, 2232-2237.	3.1	33
57	A model for evaluating injectable bone replacements in the vertebrae of sheep: radiological and histological study. Biomaterials, 1999, 20, 2107-2114.	5.7	24
58	Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone, 1999, 25, 91S-94S.	1.4	120