
Jacopo Dal Corso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3592804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Background Earth system state amplified Carnian (Late Triassic) environmental changes. Earth and Planetary Science Letters, 2022, 578, 117321.	4.4	14
2	Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction. Global and Planetary Change, 2022, 209, 103731.	3.5	16
3	Shallow ocean oxygen decline during the end-Triassic mass extinction. Global and Planetary Change, 2022, 210, 103770.	3.5	10
4	Environmental crises at the Permian–Triassic mass extinction. Nature Reviews Earth & Environment, 2022, 3, 197-214.	29.7	78
5	Different controls on the Hg spikes linked the two pulses of the Late Ordovician mass extinction in South China. Scientific Reports, 2022, 12, 5195.	3.3	10
6	Late Permian–Middle Triassic magnetostratigraphy in North China and its implications for terrestrial-marine correlations. Earth and Planetary Science Letters, 2022, 585, 117519.	4.4	10
7	Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems. Geology, 2021, 49, 657-661.	4.4	25
8	Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nature Communications, 2021, 12, 2137.	12.8	52
9	Rise of calcispheres during the Carnian Pluvial Episode (Late Triassic). Global and Planetary Change, 2021, 200, 103453.	3.5	11
10	Mercury deposition in Western Tethys during the Carnian Pluvial Episode (Late Triassic). Scientific Reports, 2021, 11, 17339.	3.3	21
11	Massive methane fluxing from magma–sediment interaction in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 2021, 12, 5534.	12.8	19
12	Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
13	Synchrotron light X-ray microtomography reveals a crystalline mush within the deep plumbing system of Large Igneous Provinces. , 2021, , .		0
14	Extinction and dawn of the modern world in the Carnian (Late Triassic). Science Advances, 2020, 6, .	10.3	116
15	An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Science Advances, 2020, 6, .	10.3	50
16	Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nature Communications, 2020, 11, 2962.	12.8	47
17	Death in the shallows: The record of Permo-Triassic mass extinction in paralic settings, southwest China. Clobal and Planetary Change, 2020, 189, 103176.	3.5	28
18	Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology, 2020, 48, 288-292.	4.4	69

JACOPO DAL CORSO

#	Article	IF	CITATIONS
19	Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 2020, 11, 1670.	12.8	49
20	Positive Sulfate Sulfur Isotope Excursion Indicates Large-Scale Pyrite Burial and Marine Anoxia during the End–Triassic Mass Extinction. , 2020, , .		0
21	Multiple S Isotopes and Hg Geochemistry at the Terrestrial Permo-Triassic Mass Extinction. , 2020, , .		Ο
22	Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian–Pliensbachian,) Tj ETQq0 0 Society of America, 2019, 131, 1255-1275.	0 rgBT /O 3.3	verlock 10 Tf 14
23	New biostratigraphic constraints show rapid emplacement of the Central Atlantic Magmatic Province (CAMP) during the end-Triassic mass extinction interval. Global and Planetary Change, 2019, 172, 60-68.	3.5	34
24	Carnian (Late Triassic) C-isotope excursions, environmental changes, and biotic turnover: a global perturbation of the Earth's surface system. Journal of the Geological Society, 2019, 176, 129-131.	2.1	5
25	The Central Atlantic Magmatic Province (CAMP): A Review. Topics in Geobiology, 2018, , 91-125.	0.5	103
26	Production and preservation of resins–Âpast and present. Biological Reviews, 2018, 93, 1684-1714.	10.4	113
27	The Carnian pluvial episode (Late Triassic): new insights into this important time of global environmental and biological change. Journal of the Geological Society, 2018, 175, 986-988.	2.1	22
28	Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). Earth-Science Reviews, 2018, 185, 732-750.	9.1	81
29	The Carnian Pluvial Episode and the first global appearance of amber. Journal of the Geological Society, 2018, 175, 1012-1018.	2.1	20
30	Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates: Detrital zircon ages from Morocco and Canada. Lithos, 2017, 278-281, 229-239.	1.4	26
31	The Loppio Oolitic Limestone (Early Jurassic, Southern Alps): A prograding oolitic body with high original porosity originated by a carbonate platform crisis and recovery. Marine and Petroleum Geology, 2017, 79, 394-411.	3.3	17
32	Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins. Geochimica Et Cosmochimica Acta, 2017, 199, 351-369.	3.9	34
33	Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event―in the Tethys realm (Late Triassic). Global and Planetary Change, 2015, 127, 79-90.	3.5	102
34	Ammonoid-calibrated sporomorph assemblages reflect a shift from hygrophytic to xerophytic elements in the late Anisian (Middle Triassic) of the Southern Alps (Italy). Review of Palaeobotany and Palynology, 2015, 218, 15-27.	1.5	10
35	Primary dolomite in the Late Triassic Travenanzes Formation, Dolomites, Northern Italy: Facies control and possible bacterial influence. Sedimentology, 2015, 62, 697-716.	3.1	45
36	The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. Journal of the Geological Society, 2014, 171, 153-164.	2.1	77

#	Article	IF	CITATIONS
37	Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410, 255-263.	2.3	50
38	Discovery of a major negative Â13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology, 2012, 40, 79-82.	4.4	135
39	Carbon-isotope variability of Triassic amber, as compared with wood and leaves (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302, 187-193.	2.3	31