Yanrong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3592413/publications.pdf

Version: 2024-02-01

		279798	243625
56	2,066 citations	23	44
papers	citations	h-index	g-index
5.6	5.6	5.6	1727
56	56	56	1737
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Conversion of strain energy in Triaxial Unloading Tests on Marble. International Journal of Rock Mechanics and Minings Sciences, 2014, 66, 160-168.	5.8	211
2	Loess genesis and worldwide distribution. Earth-Science Reviews, 2020, 201, 102947.	9.1	163
3	Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces. International Journal of Rock Mechanics and Minings Sciences, 2015, 75, 15-22.	5.8	150
4	Quantitative estimation of joint roughness coefficient using statistical parameters. International Journal of Rock Mechanics and Minings Sciences, 2015, 77, 27-35.	5.8	131
5	Characteristics and mechanisms of large deformation in the Zhegu mountain tunnel on the Sichuan–Tibet highway. Tunnelling and Underground Space Technology, 2013, 37, 157-164.	6.2	114
6	Strain Rate Dependency of Coarse Crystal Marble Under Uniaxial Compression: Strength, Deformation and Strain Energy. Rock Mechanics and Rock Engineering, 2014, 47, 1153-1164.	5.4	98
7	A review of shear and tensile strengths of the Malan Loess in China. Engineering Geology, 2018, 236, 4-10.	6.3	97
8	Effects of particle shape and size distribution on the shear strength behavior of composite soils. Bulletin of Engineering Geology and the Environment, 2013, 72, 371-381.	3.5	93
9	Ring shear tests on slip zone soils of three giant landslides in the Three Gorges Project area. Engineering Geology, 2013, 154, 106-115.	6.3	85
10	Residual strength of slip zones of large landslides in the Three Gorges area, China. Engineering Geology, 2007, 93, 82-98.	6.3	82
11	Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology. Journal of Asian Earth Sciences, 2018, 154, 271-279.	2.3	77
12	Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China. Natural Hazards, 2013, 68, 1021-1039.	3.4	75
13	A unified landslide classification system for loess slopes: A critical review. Geomorphology, 2019, 340, 67-83.	2.6	72
14	Effects of particle shape on shear strength of clay-gravel mixture. KSCE Journal of Civil Engineering, 2013, 17, 712-717.	1.9	45
15	Behavior of rounded granular materials in direct shear: Mechanisms and quantification of fluctuations. Engineering Geology, 2010, 115, 96-104.	6.3	41
16	Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns. Journal of Asian Earth Sciences, 2018, 158, 18-28.	2.3	38
17	A Real-time monitoring and early warning system for landslides in Southwest China. Journal of Mountain Science, 2015, 12, 1219-1228.	2.0	31
18	Automated tunnel rock classification using rock engineering systems. Engineering Geology, 2013, 156, 20-27.	6.3	30

#	Article	IF	CITATIONS
19	Classification of large-scale landslides induced by the 2008 Wenchuan earthquake, China. Environmental Earth Sciences, 2016, 75, 1 .	2.7	30
20	Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China. Journal of Asian Earth Sciences, 2017, 144, 5-21.	2.3	30
21	Formation of calcareous nodules in loess–paleosol sequences: Reviews of existing models with a proposed new "per evapotranspiration model― Journal of Asian Earth Sciences, 2018, 154, 8-16.	2.3	28
22	A comparative study of UDEC simulations of an unsupported rock tunnel. Tunnelling and Underground Space Technology, 2018, 72, 242-249.	6.2	28
23	Effects of Fine Gangue on Strength, Resistivity, and Microscopic Properties of Cemented Coal Gangue Backfill for Coal Mining. Shock and Vibration, 2015, 2015, 1-11.	0.6	27
24	Estimating the three-dimensional joint roughness coefficient value of rock fractures. Bulletin of Engineering Geology and the Environment, 2019, 78, 857-866.	3.5	24
25	Engineering geological assessment for route selection of railway line in geologically active area: A case study in China. Journal of Mountain Science, 2013, 10, 495-508.	2.0	22
26	Factors influencing development of cracking–sliding failures of loess across the eastern Huangtu Plateau of China. Natural Hazards and Earth System Sciences, 2018, 18, 1223-1231.	3.6	20
27	Shear zone structures and stress fluctuations in large ring shear tests. Engineering Geology, 2013, 167, 6-13.	6.3	19
28	Origin and evolution of modern loess science – 1824 to 1964. Journal of Asian Earth Sciences, 2019, 170, 45-55.	2.3	17
29	Wetting-driven formation of present-day loess structure. Geoderma, 2020, 377, 114564.	5.1	17
30	Uncertainties in estimating the roughness coefficient of rock fracture surfaces. Bulletin of Engineering Geology and the Environment, 2017, 76, 1153-1165.	3.5	16
31	Effects of test conditions on shear behaviour of composite soil. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 310-320.	1.6	14
32	Constitutive behavior of binary mixtures of kaolin and glass beads in direct shear. KSCE Journal of Civil Engineering, 2012, 16, 1152-1159.	1.9	13
33	Strength anisotropy of Malan loess and the implications for the formation of loess walls and columns. Catena, 2020, 194, 104809.	5.0	13
34	Landslide Susceptibility Mapping along a Rapidly Uplifting River Valley of the Upper Jinsha River, Southeastern Tibetan Plateau, China. Remote Sensing, 2022, 14, 1730.	4.0	13
35	The loess landslide on 15 march 2019 in Shanxi Province, China. Landslides, 2020, 17, 677-686.	5.4	11
36	Impact of rockfalls on protection measures: an experimental approach. Natural Hazards and Earth System Sciences, 2015, 15, 885-893.	3.6	10

3

#	Article	IF	CITATIONS
37	Adsorption of sulfate from acid mine drainage in Northwestern China using Malan loess. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	10
38	Probabilistic Seismic Hazard Assessment for the Shanxi Rift System, North China. Bulletin of the Seismological Society of America, 2020, 110, 127-153.	2.3	9
39	Loess and Loess Geohazards in China. , 0, , .		8
40	An Enhanced Single-Pair Learning-Based Reflectance Fusion Algorithm with Spatiotemporally Extended Training Samples. Remote Sensing, 2018, 10, 1207.	4.0	7
41	Sedimentary Characteristics of the Pleistocene Outwash Accumulation and their Implications for Paleoclimate Change in the Midstream of Dadu River, Southwestern China. Acta Geologica Sinica, 2012, 86, 924-931.	1.4	6
42	A New Direct Tension Test Method for Soils and Soft Rocks. Geotechnical Testing Journal, 2020, 43, 20190308.	1.0	6
43	A model for the formation and evolution of structure of initial loess deposits. Catena, 2022, 214, 106273.	5.0	6
44	Landslide Susceptibility Mapping and Evaluation along a River Valley in China. Acta Geologica Sinica, 2012, 86, 1022-1030.	1.4	5
45	Spiral Sampling Method for Quantitative Estimates of Joint Roughness Coefficient of Rock Fractures. Geotechnical Testing Journal, 2019, 42, 245-255.	1.0	4
46	Horizontal Compression Test: A Proposed Method for Indirect Determination of Tensile Strength of Stiff Soils and Soft Rocks. Frontiers in Earth Science, 2022, 10, .	1.8	4
47	Carbonate crusts of Paleolake Zhuyeze, Tengeri Desert, China: Formation mechanism and paleoenvironmental implications. Quaternary International, 2019, 532, 157-165.	1.5	3
48	Waterâ€induced disintegration behaviour of Malan loess. Earth Surface Processes and Landforms, 0, , .	2.5	3
49	Comparison of Test Methods for Determining the Tensile Strength of Soil and Weak Rocks. Frontiers in Earth Science, 2022, 10, .	1.8	3
50	Designing an Android-Based Application for Geohazard Reduction Using Citizen-Based Crowdsourcing Data. Mobile Information Systems, 2018, 2018, 1-11.	0.6	2
51	Early identification of potential loess landslide using convolutional neural networks with skip connection: a case study in northwest Lyliang City, Shanxi Province, China. Georisk, 0, , 1-13.	3.5	2
52	Permeability and sedimentation characteristics of pleistocene fluvio-glacial deposits in the Dadu river valley, Southwest China. Journal of Mountain Science, 2013, 10, 482-493.	2.0	1
53	Loess geology and surface processes: An introductory note. Journal of Asian Earth Sciences, 2020, 200, 104477.	2.3	1
54	Influence of Drilling Methods on the Results of Standard Penetration Test in Loess–Paleosol Sequence. Frontiers in Built Environment, 2022, 8, .	2.3	1

YANRONG LI

#	Article	IF	CITATION
55	Evaluation of wall slip effects on the flow characteristics of petroleum coke–water slurry flow along pipelines. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 818-826.	1.5	O
56	Reply to Li and Song's discussion of "Loess genesis and worldwide distribution― Earth-Science Reviews, 2021, 221, 103718.	9.1	0