
Maria M Pérez-Madrigal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3592089/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112522.	5.0	4
2	Customized Fading Scaffolds: Strong Polyorthoester Networks via Thiol–Ene Cross-linking for Cytocompatible Surface-Eroding Materials in 3D Printing. Biomacromolecules, 2021, 22, 1472-1483.	5.4	7
3	Plasmaâ€Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing. Advanced Healthcare Materials, 2021, 10, e2100425.	7.6	7
4	Electrical and Capacitive Response of Hydrogel Solid-Like Electrolytes for Supercapacitors. Polymers, 2021, 13, 1337.	4.5	17
5	Using Stereochemistry to Control Mechanical Properties in Thiol–Yne Clickâ€Hydrogels. Angewandte Chemie, 2021, 133, 26060-26068.	2.0	0
6	Using Stereochemistry to Control Mechanical Properties in Thiol–Yne Clickâ€Hydrogels. Angewandte Chemie - International Edition, 2021, 60, 25856-25864.	13.8	13
7	Robust alginate/hyaluronic acid thiol–yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomaterials Science, 2020, 8, 405-412.	5.4	48
8	Advanced Functional Hydrogel Biomaterials Based on Dynamic B–O Bonds and Polysaccharide Building Blocks. Biomacromolecules, 2020, 21, 3984-3996.	5.4	46
9	Nanofeatures affect the thermal transitions of polymer thin films: a microcantilever-based investigation. Materials Advances, 2020, 1, 2084-2094.	5.4	4
10	Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules. Journal of the American Chemical Society, 2020, 142, 19689-19697.	13.7	26
11	Semiâ€Interpenetrated Hydrogelsâ€Microfibers Electroactive Assemblies for Release and Realâ€Time Monitoring of Drugs. Macromolecular Bioscience, 2020, 20, e2000074.	4.1	3
12	3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules, 2020, 21, 1037-1059.	5.4	61
13	Organocatalysis for depolymerisation. Polymer Chemistry, 2019, 10, 172-186.	3.9	207
14	Hydrogels for flexible and compressible free standing cellulose supercapacitors. European Polymer Journal, 2019, 118, 347-357.	5.4	35
15	Controlling the Size of Two-Dimensional Polymer Platelets for Water-in-Water Emulsifiers. ACS Central Science, 2018, 4, 63-70.	11.3	94
16	Nonswelling Thiol–Yne Cross-Linked Hydrogel Materials as Cytocompatible Soft Tissue Scaffolds. Biomacromolecules, 2018, 19, 1378-1388.	5.4	67
17	Self-healing, stretchable and robust interpenetrating network hydrogels. Biomaterials Science, 2018, 6, 2932-2937.	5.4	31
18	Preparation, Surface Characterization and Anticorrosive Behavior of Polyaniline and Poly(3,4-ethylenedioxythiophene) Deposited on Aluminum Alloy AA2024-T3. Surface Engineering and Applied Electrochemistry, 2018, 54, 297-306.	0.8	1

#	Article	IF	CITATIONS
19	Hybrid Polypeptide/Polylactide Copolymers with Short Phenylalanine Blocks. Macromolecular Chemistry and Physics, 2018, 219, 1800168.	2.2	9
20	Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors. Carbohydrate Polymers, 2018, 200, 456-467.	10.2	37
21	Poly-γ-glutamic Acid Hydrogels as Electrolyte for Poly(3,4-ethylenedioxythiophene)-Based Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 3182-3193.	3.1	26
22	Biodegradable nanofibrous scaffolds as smart delivery vehicles for amino acids. Journal of Applied Polymer Science, 2017, 134, .	2.6	4
23	Synthesis of aliphatic polycarbonates with a tuneable thermal response. Polymer Chemistry, 2017, 8, 5082-5090.	3.9	21
24	Thermally Switching On/Off the Hardening of Soaked Nanocomposite Materials. ACS Central Science, 2017, 3, 817-819.	11.3	3
25	Paradigm Shift for Preparing Versatile M ²⁺ -Free Gels from Unmodified Sodium Alginate. Biomacromolecules, 2017, 18, 2967-2979.	5.4	46
26	Weighing biointeractions between fibrin(ogen) and clotâ€binding peptides using microcantilever sensors. Journal of Peptide Science, 2017, 23, 162-171.	1.4	8
27	Antimicrobial Electrospun Fibers of Polyester Loaded with Engineered Cyclic Gramicidin Analogues. Fibers, 2017, 5, 34.	4.0	3
28	Enhanced dielectric performance of a block copolymer-polythiophene nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1896-1905.	2.1	5
29	Composites based on epoxy resins and poly(3â€ŧhiophene methyl acetate) nanoparticles: mechanical and electrical properties. Polymer Composites, 2016, 37, 734-745.	4.6	0
30	Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries. Journal of Materials Chemistry A, 2016, 4, 8952-8968.	10.3	89
31	Hierarchical self-assembly of di-, tri- and tetraphenylalanine peptides capped with two fluorenyl functionalities: from polymorphs to dendrites. Soft Matter, 2016, 12, 5475-5488.	2.7	26
32	Powering the future: application of cellulose-based materials for supercapacitors. Green Chemistry, 2016, 18, 5930-5956.	9.0	196
33	Electrospray loading and release of hydrophobic gramicidin in polyester microparticles. RSC Advances, 2016, 6, 73045-73055.	3.6	6
34	Confinement of a Î ² -barrel protein in nanoperforated free-standing nanomembranes for ion transport. Nanoscale, 2016, 8, 16922-16935.	5.6	16
35	Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. Journal of Materials Chemistry A, 2016, 4, 1792-1805.	10.3	97
36	Semiconducting, biodegradable and bioactive fibers for drug delivery. EXPRESS Polymer Letters, 2016, 10, 628-646.	2.1	15

#	Article	IF	CITATIONS
37	Selfâ€Assembly of Tetraphenylalanine Peptides. Chemistry - A European Journal, 2015, 21, 16895-16905.	3.3	45
38	DNA-Catalyzed Henry Reaction in Pure Water and the Striking Influence of Organic Buffer Systems. Molecules, 2015, 20, 4136-4147.	3.8	9
39	Electroactive and bioactive films of random copolymers containing terthiophene, carboxyl and Schiff base functionalities in the main chain. Polymer Chemistry, 2015, 6, 4319-4335.	3.9	9
40	Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. Journal of Materials Chemistry B, 2015, 3, 5904-5932.	5.8	48
41	Polypyrrole-Supported Membrane Proteins for Bio-Inspired Ion Channels. ACS Applied Materials & Interfaces, 2015, 7, 1632-1643.	8.0	20
42	Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds. Polymer Chemistry, 2015, 6, 925-937.	3.9	20
43	Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene:thermoplastic polyurethane. Polymer Chemistry, 2014, 5, 1248-1257.	3.9	24
44	Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds. RSC Advances, 2014, 4, 15245.	3.6	19
45	Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 9719-9732.	8.0	45
46	Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: Application to ultra-thin polythiophene. Review of Scientific Instruments, 2013, 84, 053904.	1.3	11
47	Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: thermal, nanostructural and nanomechanical properties. Polymer Chemistry, 2013, 4, 568-583.	3.9	29
48	Nanometric ultracapacitors fabricated using multilayer of conducting polymers on self-assembled octanethiol monolayers. Organic Electronics, 2013, 14, 1483-1495.	2.6	16
49	Nanomembranes and Nanofibers from Biodegradable Conducting Polymers. Polymers, 2013, 5, 1115-1157.	4.5	90
50	Biodegradable free-standing nanomembranes of conducting polymer:polyester blends as bioactive platforms for tissue engineering. Journal of Materials Chemistry, 2012, 22, 585-594.	6.7	42
51	Bioactive and electroactive response of flexible polythiophene:polyester nanomembranes for tissue engineering. Polymer Chemistry, 2012, 3, 979.	3.9	41
52	The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane. EXPRESS Polymer Letters, 2011, 5, 1028-1040.	2.1	55
53	Porous Poly(3,4â€ethylenedioxythiophene)â€Based Electrodes for Detecting Stress Biomarkers in Artificial Urine and Sweat. Macromolecular Materials and Engineering, 0, , 2200269.	3.6	1