
Huanming Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3592018/publications.pdf Version: 2024-02-01

HUANMING XIA

#	Article	IF	CITATIONS
1	Microfluidic strategy for coating and modification of polymer-bonded nano-HNS explosives. Chemical Engineering Journal, 2022, 428, 131096.	6.6	15
2	Nonlinear microfluidics: device physics, functions, and applications. Lab on A Chip, 2021, 21, 1241-1268.	3.1	32
3	Design and Fabrication of the Vertical-Flow Bioreactor for Compaction Hepatocyte Culture in Drug Testing Application. Biosensors, 2021, 11, 160.	2.3	2
4	Continuous spheroidization strategy for explosives with micro/nano hierarchical structure by coupling microfluidics and spray drying. Chemical Engineering Journal, 2021, 412, 128613.	6.6	21
5	Reducing the membrane fouling in cross-flow filtration using a facile fluidic oscillator. Separation and Purification Technology, 2021, 272, 118854.	3.9	10
6	A facile method for microfluidic metering and transport. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	1
7	Improvement of silver azide crystal morphology and detonation behavior by fast mixing using a microreaction system with an integrated static micromixer. Reaction Chemistry and Engineering, 2020, 5, 154-162.	1.9	16
8	A droplet platform capable of handling dissimilar liquids and its application for separation of bacteria from blood. Biomicrofluidics, 2020, 14, 034102.	1.2	7
9	Microfluidic strategy for rapid and high-quality control of crystal morphology of explosives. Reaction Chemistry and Engineering, 2020, 5, 1093-1103.	1.9	19
10	Microreaction system combining chaotic micromixing with fast mixing and particle growth in liquid-segmented flow for the synthesis of hazardous ionic materials. Energetic Materials Frontiers, 2020, 1, 186-194.	1.3	9
11	Passive Micromixer Platform for Size- and Shape-Controllable Preparation of Ultrafine HNS. Industrial & Engineering Chemistry Research, 2019, 58, 16709-16718.	1.8	42
12	Synchronized generation and coalescence of largely dissimilar microdroplets governed by pulsating continuous-phase flow. Applied Physics Letters, 2019, 114, .	1.5	9
13	An efficient micromixer combining oscillatory flow and divergent circular chambers. Microsystem Technologies, 2019, 25, 2741-2750.	1.2	25
14	Digital microfluidic platform for automated detection of human chorionic gonadotropin. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	28
15	Tunable particle separation in a hybrid dielectrophoresis (DEP)- inertial microfluidic device. Sensors and Actuators B: Chemical, 2018, 267, 14-25.	4.0	99
16	Integrated aeroelastic vibrator for fluid mixing in open microwells. Journal of Micromechanics and Microengineering, 2018, 28, 017001.	1.5	4
17	Micro‣egmented Flow Technology Applied for Synthesis and Shape Control of Lead Styphnate Microâ€Particles. Propellants, Explosives, Pyrotechnics, 2018, 43, 286-293.	1.0	9
18	A comparative discussion of different designs of passive micromixers: specific sensitivities of mixing efficiency on Reynolds numbers and fluid properties. Microsystem Technologies, 2018, 24, 1253-1263.	1.2	15

HUANMING XIA

#	Article	IF	CITATIONS
19	Optimization Synthesis of Morphologically Homogeneous and Rod-Like Structure Barium Trinitroresorcinate Produced by Segmented Flow. Journal of Chemical Engineering of Japan, 2018, 51, 524-529.	0.3	1
20	Microfluidic Platform for Preparation and Screening of Narrow Size-Distributed Nanoscale Explosives and Supermixed Composite Explosives. Industrial & Engineering Chemistry Research, 2018, 57, 13191-13204.	1.8	30
21	Microfluidic mixing through oscillatory transverse perturbations. Modern Physics Letters B, 2018, 32, 1840030.	1.0	5
22	The negative-differential-resistance (NDR) mechanism of a hydroelastic microfluidic oscillator. Journal of Micromechanics and Microengineering, 2017, 27, 075001.	1.5	15
23	High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1422-1430.	2.7	47
24	Microfluidic Synthesis of Size ontrolled and Morphologically Homogeneous Lead Trinitroresorcinate Produced by Segmented Flow. Propellants, Explosives, Pyrotechnics, 2016, 41, 899-905.	1.0	12
25	A vertical-flow bioreactor array compacts hepatocytes for enhanced polarity and functions. Lab on A Chip, 2016, 16, 3898-3908.	3.1	15
26	Characterization of an acoustically coupled multilayered microfluidic platform on SAW substrate using mixing phenomena. Sensors and Actuators A: Physical, 2015, 233, 360-367.	2.0	7
27	Numerical analysis and characterization of a Wankel pump as a miniaturized mixer. Journal of Micromechanics and Microengineering, 2015, 25, 084001.	1.5	5
28	Anti-solvent precipitation of solid lipid nanoparticles using a microfluidic oscillator mixer. Microfluidics and Nanofluidics, 2015, 19, 283-290.	1.0	25
29	Analyzing the transition pressure and viscosity limit of a hydroelastic microfluidic oscillator. Applied Physics Letters, 2014, 104, 024101.	1.5	20
30	Live human nasal epithelial cells (hNECs) on chip for in vitro testing of gaseous formaldehyde toxicity via airway delivery. Lab on A Chip, 2014, 14, 677-680.	3.1	37
31	Aeroelasticity-based fluid agitation for lab-on-chips. Lab on A Chip, 2013, 13, 1619.	3.1	6
32	Numerical study on microstructured reactor with chaotic heat and mass transfer and its potential application for exothermic process. Chemical Engineering Research and Design, 2012, 90, 1719-1726.	2.7	5
33	Converting steady laminar flow to oscillatory flow through a hydroelasticity approach at microscales. Lab on A Chip, 2012, 12, 60-64.	3.1	34
34	Femtosecond laser-induced modification of surface wettability of PMMA for fluid separation in microchannels. Microfluidics and Nanofluidics, 2011, 10, 225-229.	1.0	47
35	Approximate mapping method for prediction of chaotic mixing in spatial-periodic microchannel. Chemical Engineering Research and Design, 2010, 88, 1419-1426.	2.7	2
36	A microfluidic mixer with self-excited â€~turbulent' fluid motion for wide viscosity ratio applications. Lab on A Chip, 2010, 10, 1712.	3.1	46

HUANMING XIA

#	Article	IF	CITATIONS
37	Investigation of hot roller embossing for microfluidic devices. Journal of Micromechanics and Microengineering, 2010, 20, 015017.	1.5	46
38	Fluid Micromixing Technology and Its Applications for Biological and Chemical Processes. IFMBE Proceedings, 2007, , 16-20.	0.2	5
39	Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques. Journal of Micromechanics and Microengineering, 2006, 16, 53-61.	1.5	43
40	Numerical and experimental observation of chaotic mixing in microfluidic mixer. Journal of Visualization, 2005, 8, 291-291.	1.1	0
41	TECHNIQUES TO ENHANCE FLUID MICRO-MIXING AND CHAOTIC MICROMIXERS. Modern Physics Letters B, 2005, 19, 1567-1570.	1.0	13
42	Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab on A Chip, 2005, 5, 748.	3.1	211
43	Parallel vortex shedding at Re \$;{=}{m {O(10^4)}\$ – a transverse control cylinder technique approach. Journal of Fluid Mechanics, 2005, 541, 143.	1.4	3