Stephen R Frankenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591530/publications.pdf

Version: 2024-02-01

44 papers

2,092 citations

393982 19 h-index 253896 43 g-index

46 all docs

46 docs citations

46 times ranked

2334 citing authors

#	Article	IF	Citations
1	Annotation of immune genes in the extinct thylacine (Thylacinus cynocephalus). Immunogenetics, 2021, 73, 263-275.	1.2	3
2	Of eyes and embryos: subfunctionalization of the <i>CRX < /i>homeobox gene in mammalian evolution. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190830.</i>	1.2	6
3	Transcriptomic Analysis of MAP3K1 and MAP3K4 in the Developing Marsupial Gonad. Sexual Development, 2019, 13, 195-204.	1.1	3
4	Pre-gastrula Development of Non-eutherian Mammals. Current Topics in Developmental Biology, 2018, 128, 237-266.	1.0	11
5	Conceptus Coats of Marsupials and Monotremes. Current Topics in Developmental Biology, 2018, 130, 357-377.	1.0	10
6	Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and minkâ€. Biology of Reproduction, 2017, 96, 877-894.	1.2	21
7	Expression of STRA8 is conserved in therian mammals but expression of CYP26B1 differs between marsupials and mice. Biology of Reproduction, 2017, 97, 217-229.	1.2	6
8	The mammalian blastocyst. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 210-232.	5.9	50
9	Cell fate in animal and human blastocysts and the determination of viability. Molecular Human Reproduction, 2016, 22, 681-690.	1.3	38
10	Characterisation of major histocompatibility complex class I genes at the fetal-maternal interface of marsupials. Immunogenetics, 2015, 67, 385-393.	1.2	5
11	Different Species Choose Their Own Paths to Pluripotency. Developmental Cell, 2015, 35, 267-268.	3.1	4
12	Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause. Reproduction, 2014, 147, 21-31.	1.1	9
13	The POU-er of gene nomenclature. Development (Cambridge), 2014, 141, 2921-2923.	1.2	33
14	On the origin of POU5F1. BMC Biology, 2013, 11, 56.	1.7	49
15	Anatomy of a blastocyst: Cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis, 2013, 51, 219-233.	0.8	91
16	Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development (Cambridge), 2013, 140, 965-975.	1.2	46
17	Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development (Cambridge), 2012, 139, 129-139.	1.2	143
18	Evolution of vertebrate interferon inducible transmembrane proteins. BMC Genomics, 2012, 13, 155.	1.2	92

#	Article	IF	Citations
19	Evolution of coding and non-coding genes in HOX clusters of a marsupial. BMC Genomics, 2012, 13, 251.	1.2	47
20	Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function. BMC Research Notes, 2011, 4, 200.	0.6	6
21	Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology, 2011, 12, 414.	13.9	22
22	Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology, $2011, 12, R81$.	13.9	167
23	Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling. Developmental Cell, 2011, 21, 1005-1013.	3.1	236
24	Identification of two distinct genes at the vertebrate TRPC2 locus and their characterisation in a marsupial and a monotreme. BMC Molecular Biology, 2011, 12, 39.	3.0	5
25	A novel MSMB-related microprotein in the postovulatory egg coats of marsupials. BMC Evolutionary Biology, 2011, 11, 373.	3.2	12
26	DDX4 (VASA) Is Conserved in Germ Cell Development in Marsupials and Monotremes1. Biology of Reproduction, 2011, 85, 733-743.	1.2	41
27	A novel marsupial pri-miRNA transcript has a putative role in gamete maintenance and defines a vertebrate miRNA cluster paralogous to the miR-15a/miR-16-1 cluster. Reproduction, 2011, 142, 539-550.	1.1	3
28	The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. Developmental Biology, 2010, 337, 162-170.	0.9	72
29	Culturing Tammar Wallaby <i>(Macropus eugenii)</i> Pouch Young Gonads. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5336.	0.2	1
30	Immunohistochemical Staining of Sectioned Tammar Wallaby (Macropus eugenii) Tissue. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5338-pdb.prot5338.	0.2	4
31	Surgery on Tammar Wallaby (Macropus eugenii) Pouch Young. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5334-pdb.prot5334.	0.2	1
32	Performing Surgery on Tammar Wallaby <i>(Macropus eugenii)</i> Adults. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5333.	0.2	2
33	Whole-Mount Immunohistochemical Staining of Tammar Wallaby (Macropus eugenii) Cleavage Stages and Blastocysts. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5339-pdb.prot5339.	0.2	1
34	Collection, Handling, Fixation, and Processing of Tammar Wallaby <i>(Macropus eugenii)</i>) Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5335.	0.2	4
35	Working with Tammar Wallabies (Macropus eugenii). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5332-pdb.prot5332.	0.2	5
36	The Tammar Wallaby, <i>Macropus eugenii Io> A Model Kangaroo for the Study of Developmental and Reproductive Biology. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo137.</i>	0.2	21

#	Article	IF	CITATIONS
37	17-P012 Marsupial POU5F1 and POU2 and the evolution of early developmental processes in vertebrates. Mechanisms of Development, 2009, 126, S274.	1.7	O
38	Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development (Cambridge), 2008, 135, 3081-3091.	1.2	470
39	Novel gene expression patterns along the proximo-distal axis of the mouse embryo before gastrulation. BMC Developmental Biology, 2007, 7, 8.	2.1	34
40	Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. Journal of Cell Science, 2005, 118, 505-515.	1,2	242
41	Identification of a homologue of POU5F1 (OCT3/4) in a marsupial, the brushtail possum. Molecular Reproduction and Development, 2001, 58, 255-261.	1.0	17
42	Ultrastructure of oogenesis in the brushtail possum. Molecular Reproduction and Development, 2001, 58, 297-306.	1.0	16
43	An ultrastructural study of the role of an extracellular matrix during normal cleavage in a marsupial, the brushtail possum. Molecular Reproduction and Development, 1998, 50, 420-433.	1.0	27
44	A light microscopic study of oogenesis in the brushtail possum Trichosurus vulpecula. Reproduction, Fertility and Development, 1996, 8, 541.	0.1	14