Stephen R Frankenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development (Cambridge), 2008, 135, 3081-3091.	1.2	470
2	Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. Journal of Cell Science, 2005, 118, 505-515.	1.2	242
3	Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling. Developmental Cell, 2011, 21, 1005-1013.	3.1	236
4	Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology, 2011, 12, R81.	13.9	167
5	Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development (Cambridge), 2012, 139, 129-139.	1.2	143
6	Evolution of vertebrate interferon inducible transmembrane proteins. BMC Genomics, 2012, 13, 155.	1.2	92
7	Anatomy of a blastocyst: Cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis, 2013, 51, 219-233.	0.8	91
8	The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. Developmental Biology, 2010, 337, 162-170.	0.9	72
9	The mammalian blastocyst. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 210-232.	5.9	50
10	On the origin of POU5F1. BMC Biology, 2013, 11, 56.	1.7	49
11	Evolution of coding and non-coding genes in HOX clusters of a marsupial. BMC Genomics, 2012, 13, 251.	1.2	47
12	Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development (Cambridge), 2013, 140, 965-975.	1.2	46
13	DDX4 (VASA) Is Conserved in Germ Cell Development in Marsupials and Monotremes1. Biology of Reproduction, 2011, 85, 733-743.	1.2	41
14	Cell fate in animal and human blastocysts and the determination of viability. Molecular Human Reproduction, 2016, 22, 681-690.	1.3	38
15	Novel gene expression patterns along the proximo-distal axis of the mouse embryo before gastrulation. BMC Developmental Biology, 2007, 7, 8.	2.1	34
16	The POU-er of gene nomenclature. Development (Cambridge), 2014, 141, 2921-2923.	1.2	33
17	An ultrastructural study of the role of an extracellular matrix during normal cleavage in a marsupial, the brushtail possum. Molecular Reproduction and Development, 1998, 50, 420-433.	1.0	27
18	Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology, 2011, 12, 414.	13.9	22

#	Article	IF	CITATIONS
19	The Tammar Wallaby, <i>Macropus eugenii</i> : A Model Kangaroo for the Study of Developmental and Reproductive Biology. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo137.	0.2	21
20	Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and minkâ€. Biology of Reproduction, 2017, 96, 877-894.	1.2	21
21	Identification of a homologue ofPOU5F1 (OCT3/4) in a marsupial, the brushtail possum. Molecular Reproduction and Development, 2001, 58, 255-261.	1.0	17
22	Ultrastructure of oogenesis in the brushtail possum. Molecular Reproduction and Development, 2001, 58, 297-306.	1.0	16
23	A light microscopic study of oogenesis in the brushtail possum Trichosurus vulpecula. Reproduction, Fertility and Development, 1996, 8, 541.	0.1	14
24	A novel MSMB-related microprotein in the postovulatory egg coats of marsupials. BMC Evolutionary Biology, 2011, 11, 373.	3.2	12
25	Pre-gastrula Development of Non-eutherian Mammals. Current Topics in Developmental Biology, 2018, 128, 237-266.	1.0	11
26	Conceptus Coats of Marsupials and Monotremes. Current Topics in Developmental Biology, 2018, 130, 357-377.	1.0	10
27	Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause. Reproduction, 2014, 147, 21-31.	1.1	9
28	Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function. BMC Research Notes, 2011, 4, 200.	0.6	6
29	Expression of STRA8 is conserved in therian mammals but expression of CYP26B1 differs between marsupials and mice. Biology of Reproduction, 2017, 97, 217-229.	1.2	6
30	Of eyes and embryos: subfunctionalization of the <i>CRX</i> homeobox gene in mammalian evolution. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190830.	1.2	6
31	Working with Tammar Wallabies (Macropus eugenii). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5332-pdb.prot5332.	0.2	5
32	Identification of two distinct genes at the vertebrate TRPC2 locus and their characterisation in a marsupial and a monotreme. BMC Molecular Biology, 2011, 12, 39.	3.0	5
33	Characterisation of major histocompatibility complex class I genes at the fetal-maternal interface of marsupials. Immunogenetics, 2015, 67, 385-393.	1.2	5
34	Immunohistochemical Staining of Sectioned Tammar Wallaby (Macropus eugenii) Tissue. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5338-pdb.prot5338.	0.2	4
35	Collection, Handling, Fixation, and Processing of Tammar Wallaby <i>(Macropus eugenii)</i> Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5335.	0.2	4
36	Different Species Choose Their Own Paths to Pluripotency. Developmental Cell, 2015, 35, 267-268.	3.1	4

#	Article	IF	CITATIONS
37	A novel marsupial pri-miRNA transcript has a putative role in gamete maintenance and defines a vertebrate miRNA cluster paralogous to the miR-15a/miR-16-1 cluster. Reproduction, 2011, 142, 539-550.	1.1	3
38	Annotation of immune genes in the extinct thylacine (Thylacinus cynocephalus). Immunogenetics, 2021, 73, 263-275.	1.2	3
39	Transcriptomic Analysis of MAP3K1 and MAP3K4 in the Developing Marsupial Gonad. Sexual Development, 2019, 13, 195-204.	1.1	3
40	Performing Surgery on Tammar Wallaby <i>(Macropus eugenii)</i> Adults. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5333.	0.2	2
41	Culturing Tammar Wallaby <i>(Macropus eugenii)</i> Pouch Young Gonads. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5336.	0.2	1
42	Surgery on Tammar Wallaby (Macropus eugenii) Pouch Young. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5334-pdb.prot5334.	0.2	1
43	Whole-Mount Immunohistochemical Staining of Tammar Wallaby (Macropus eugenii) Cleavage Stages and Blastocysts. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5339-pdb.prot5339.	0.2	1
44	17-P012 Marsupial POU5F1 and POU2 and the evolution of early developmental processes in vertebrates. Mechanisms of Development, 2009, 126, S274.	1.7	0