
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The roles of a flagellar HSP40 ensuring rhythmic beating. Molecular Biology of the Cell, 2019, 30, 228-241.	0.9	9
2	Holliday junction resolvases mediate chloroplast nucleoid segregation. Science, 2017, 356, 631-634.	6.0	44
3	Eyespot-dependent determination of the phototactic sign in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5299-5304.	3.3	70
4	Identification of the agg1 mutation responsible for negative phototaxis in a "wild-type―strain of Chlamydomonas reinhardtii. Biochemistry and Biophysics Reports, 2016, 7, 379-385.	0.7	26
5	Alternative evolution of a spheroidal colony in volvocine algae: developmental analysis of embryogenesis in Astrephomene (Volvocales, Chlorophyta). BMC Evolutionary Biology, 2016, 16, 243.	3.2	17
6	SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centrioleAarchitecture. Nature Cell Biology, 2016, 18, 393-403.	4.6	73
7	Algal Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase, Triacylglycerol Accumulation Regulator1, Regulates Accumulation of Triacylglycerol in Nitrogen or Sulfur Deficiency. Plant Physiology, 2015, 168, 752-764.	2.3	61
8	Reduced tubulin polyglutamylation suppresses flagellar shortness in <i>Chlamydomonas</i> . Molecular Biology of the Cell, 2015, 26, 2810-2822.	0.9	50
9	Space-Dependent Formation of Central Pair Microtubules and Their Interactions with Radial Spokes. PLoS ONE, 2014, 9, e110513.	1.1	16
10	TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella. ELife, 2014, 3, e01566.	2.8	69
11	A conserved flagella-associated protein in <i>Chlamydomonas</i> , FAP234, is essential for axonemal localization of tubulin polyglutamylase TTLL9. Molecular Biology of the Cell, 2014, 25, 107-117.	0.9	30
12	Cartwheel assembly. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130458.	1.8	61
13	FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in <i>Chlamydomonas</i> . Molecular Biology of the Cell, 2014, 25, 1472-1483.	0.9	76
14	Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. Photosynthesis Research, 2014, 121, 175-184.	1.6	27
15	The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. Journal of Cell Biology, 2013, 201, 263-278.	2.3	78
16	The Simplest Integrated Multicellular Organism Unveiled. PLoS ONE, 2013, 8, e81641.	1.1	40
17	The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. Journal of Cell Biology, 2012, 199, 151-167.	2.3	103
18	Scaffolding function of the Chlamydomonas procentriole protein CRC70, a member of the conserved Cep70 family. Journal of Cell Science, 2011, 124, 2964-2975.	1.2	14

#	Article	lF	CITATIONS
19	Structures of SAS-6 Suggest Its Organization in Centrioles. Science, 2011, 331, 1196-1199.	6.0	284
20	Tubulin Polyglutamylation Regulates Axonemal Motility by Modulating Activities of Inner-Arm Dyneins. Current Biology, 2010, 20, 441-445.	1.8	157
21	Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. Journal of Cell Biology, 2010, 190, 65-71.	2.3	74
22	Bld10p Constitutes the Cartwheel-Spoke Tip and Stabilizes the 9-Fold Symmetry of the Centriole. Current Biology, 2007, 17, 1778-1783.	1.8	150
23	SAS-6 is a Cartwheel Protein that Establishes the 9-Fold Symmetry of the Centriole. Current Biology, 2007, 17, 2169-2174.	1.8	233
24	Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. Journal of Cell Science, 2005, 118, 529-537.	1.2	64
25	An Axonemal Dynein Particularly Important for Flagellar Movement at High Viscosity. Journal of Biological Chemistry, 2005, 280, 41412-41420.	1.6	103
26	The mouse ortholog of EFHC1 implicated in juvenile myoclonic epilepsy is an axonemal protein widely conserved among organisms with motile cilia and flagella. FEBS Letters, 2005, 579, 819-822.	1.3	56
27	Oda5p, a Novel Axonemal Protein Required for Assembly of the Outer Dynein Arm and an Associated Adenylate Kinase. Molecular Biology of the Cell, 2004, 15, 2729-2741.	0.9	80
28	Bld10p, a novel protein essential for basal body assembly in Chlamydomonas. Journal of Cell Biology, 2004, 165, 663-671.	2.3	131
29	Establishment of publicly available cDNA material and information resource of Chlamydomonas reinhardtii (Chlorophyta) to facilitate gene function analysis. Phycologia, 2004, 43, 722-726.	0.6	24
30	A Novel Family of Unconventional Actins in Volvocalean Algae. Journal of Molecular Evolution, 2003, 57, 555-561.	0.8	9
31	Expression of Conventional and Unconventional Actins in Chlamydomonas reinhardtii upon Deflagellation and Sexual Adhesion. Eukaryotic Cell, 2003, 2, 486-493.	3.4	32
32	Rib72, a Conserved Protein Associated with the Ribbon Compartment of Flagellar A-microtubules and Potentially Involved in the Linkage between Outer Doublet Microtubules. Journal of Biological Chemistry, 2003, 278, 7725-7734.	1.6	72
33	Kinesin-II is not essential for mitosis and cell growth inChlamydomonas. Cytoskeleton, 2002, 52, 195-201.	4.4	39
34	Rescue of aChlamydomonas inner-arm-dynein-deficient mutant by electroporation-mediated delivery of recombinant p28 light chain. Cytoskeleton, 2002, 53, 273-280.	4.4	12
35	Recovery of flagellar dynein function in aChlamydomonas actin/dynein-deficient mutant upon introduction of muscle actin by electroporation. Cytoskeleton, 2001, 49, 146-153.	4.4	18
36	Isolation and characterization of novelChlamydomonas mutants that display phototaxis but not photophobic response. , 1998, 41, 353-362.		38

#	Article	IF	CITATIONS
37	Highly Divergent Actin Expressed in aChlamydomonasMutant Lacking the Conventional Actin Gene. Biochemical and Biophysical Research Communications, 1998, 251, 71-76.	1.0	50
38	Recovery of Flagellar Inner-arm Dynein and the Fertilization Tubule in Chlamydomonas ida5 Mutant by Transformation with Actin Genes Cell Structure and Function, 1998, 23, 273-281.	0.5	13
39	Chlamydomonas Inner-Arm Dynein Mutant, ida5, Has a Mutation in an Actin-encoding Gene. Journal of Cell Biology, 1997, 137, 649-656.	2.3	117
40	Isolation and Phenotypic Characterization of Chlamydomonas Mutants Defective in Cytokinesis Cell Structure and Function, 1997, 22, 1-5.	0.5	13
41	Cloning and characterization of the actin-encoding gene of Chlamydomonas reinhardtii. Gene, 1996, 168, 117-121.	1.0	42
42	Immunological detection of actin in the 14S ciliary dynein ofTetrahymena. FEBS Letters, 1994, 343, 173-176.	1.3	31
43	A micronucleus-specific sequence exists in the 5′-upstream region of calmodulin gene inTetrahymena thermophila. Nucleic Acids Research, 1993, 21, 2409-2414.	6.5	51
44	Expression of tetrahymena actin in mammalian cells. Cell Biology International Reports, 1992, 16, 645-651.	0.7	1
45	A chimeric actin carrying N-terminal portion of tetrahymena actin does not bind to DNAse I. Biochemical and Biophysical Research Communications, 1992, 184, 1511-1516.	1.0	5
46	Timing of formation ofTetrahymena contractile ring microfilaments investigated by inhibition with skeletal muscle actin. Genesis, 1992, 13, 210-215.	3.1	12
47	Tetrahymena Profilin Is Localized in the Division Furrow. Journal of Biochemistry, 1992, 112, 637-642.	0.9	47
48	Tetrahymena 14-NM filament-forming protein has citrate synthase activity. Biochemical and Biophysical Research Communications, 1991, 174, 1028-1034.	1.0	37
49	The primary structure of Tetrahymena profilin. Biochemical and Biophysical Research Communications, 1991, 175, 543-550.	1.0	24
50	Drastic Change in the Level of Actin mRNA in the Course of Synchronous Division in Tetrahymena. Journal of Biochemistry, 1991, 109, 399-403.	0.9	9
51	A novel Vero cell line for use as a mammalian host-vector system in serum-free medium. Cytotechnology, 1991, 7, 165-172.	0.7	7
52	Analysis of Furrow Formation and Furrowing during Cell Division in Tetrahymena Using Cell-Division-Arrest Mutants. Annals of the New York Academy of Sciences, 1990, 582, 166-178.	1.8	10
53	Purification and characterization of Tetrahymena profilin. Biochemical and Biophysical Research Communications, 1990, 170, 957-962.	1.0	10
54	Tetrahymena Actin: Copolymerization with Skeletal Muscle Actin and Interactions with Muscle Actin-Binding Proteins. Journal of Biochemistry, 1990, 107, 32-36.	0.9	30

#	Article	IF	CITATIONS
55	Purification of Tetrahymena actin reveals some unusual properties Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 75-79.	3.3	63
56	Tetrahymena actin. Journal of Molecular Biology, 1987, 194, 181-192.	2.0	113
57	Tetrahymena Actin: Localization and Possible Biological Roles of Actin in Tetrahymena Cells1. Journal of Biochemistry, 1987, 102, 537-545.	0.9	49
58	Involvement of Tetrahymena intermediate filament protein, a 49K protein, in the oral morphogenesis. Experimental Cell Research, 1983, 148, 207-220.	1.2	29