Andrea Battisti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591326/publications.pdf

Version: 2024-02-01

166 papers 6,000 citations

39 h-index 110387 64 g-index

175 all docs

175
docs citations

175 times ranked

5834 citing authors

#	Article	IF	CITATIONS
1	Management of Popillia japonica in container-grown nursery stock in Italy. Phytoparasitica, 2022, 50, 83-89.	1.2	11
2	Modelling diapause termination and phenology of the Japanese beetle, Popillia japonica. Journal of Pest Science, 2022, 95, 869-880.	3.7	5
3	Commodity risk assessment of bonsai plants from China consisting of Pinus parviflora grafted on Pinus thunbergii. EFSA Journal, 2022, 20, e07077.	1.8	11
4	First report of the alien ambrosia beetle <i>Cnestus mutilatus</i> and further finding of <i>Anisandrus maiche</i> in the European part of the EPPO region (Coleoptera: Curculionidae:) Tj ETQq0 0 0 rgB	T /008 erloc	k 10 Tf 50 61
5	Invasion of <i>Popillia japonica</i> in Lombardy, Italy: Interactions with soil entomopathogenic nematodes and native grubs. Agricultural and Forest Entomology, 2022, 24, 600-608.	1.3	6
6	Response of the egg parasitoids of the pine processionary moth toÂhost density and forest cover at the southern edge of the range. Agricultural and Forest Entomology, 2021, 23, 212-221.	1.3	5
7	Is body size a good indicator of fecundity in the genus <i>Thaumetopoea</i> ? A story told by two intrageneric Mediterranean forest defoliators. Agricultural and Forest Entomology, 2021, 23, 23-31.	1.3	1
8	Spatial orientation of social caterpillars is influenced by polarized light. Biology Letters, 2021, 17, 20200736.	2.3	9
9	Entangling the Enemy: Ecological, Systematic, and Medical Implications of Dermestid Beetle Hastisetae. Insects, 2021, 12, 436.	2.2	3
10	Natural Enemies of the Cedar Processionary Moth, Thaumetopoea bonjeani (Lepidoptera:) Tj ETQq0 0 0 rgBT /Ove	erlock 10 1 0.6	f 50 382 Td
11	Chemical control of Popillia japonica adults on high-value crops and landscape plants of northern Italy. Crop Protection, 2021, 150, 105808.	2.1	5
12	Postharvest short cold temperature treatment to preserve fruit quality after Drosophila suzukii damage. International Journal of Pest Management, 2020, 66, 23-30.	1.8	8
13	The Risk of Bark and Ambrosia Beetles Associated with Imported Non-Coniferous Wood and Potential Horizontal Phytosanitary Measures. Forests, 2020, 11, 342.	2.1	17
14	Light Traps in Shipping Containers: A New Tool for the Early Detection of Insect Alien Species. Journal of Economic Entomology, 2020, 113, 1718-1724.	1.8	13
15	Performance of Trichopria drosophilae (Hymenoptera: Diapriidae), a Generalist Parasitoid of Drosophila suzukii (Diptera: Drosophilidae), at Low Temperature. Journal of Insect Science, 2020, 20, .	1.5	4
16	Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 2020, 18, 141-150.	4.0	241
17	Movement behaviour of two social urticating caterpillars in opposite hemispheres. Movement Ecology, 2020, 8, 4.	2.8	8
18	Temperature Tolerance and Thermal Environment of European Seed Bugs. Insects, 2020, 11, 197.	2.2	17

#	Article	IF	CITATIONS
19	Occurrence, ecological function and medical importance of dermestid beetle hastisetae. PeerJ, 2020, 8, e8340.	2.0	9
20	From refugia to contact: Pine processionary moth hybrid zone in a complex biogeographic setting. Ecology and Evolution, 2020, 10, 1623-1638.	1.9	5
21	Egg mass structure of the processionary caterpillar Ochrogaster lunifer (Lepidoptera:) Tj ETQq1 1 0.784314 rgBT (Hymenoptera: Chalcidoidea: Eupelmidae)?. Austral Entomology, 2019, 58, 810-815.	/Overlock 1.4	10 Tf 50 66 5
22	A population genetic study of the egg parasitoid Baryscapus servadeii reveals large scale automictic parthenogenesis and almost fixed homozygosity. Biological Control, 2019, 139, 104097.	3.0	14
23	Commodity risk assessment of black pine (PinusÂthunbergii Parl.) bonsai from Japan. EFSA Journal, 2019, 17, e05667.	1.8	26
24	Complex Insect–Pathogen Interactions in Tree Pandemics. Frontiers in Physiology, 2019, 10, 550.	2.8	21
25	The Apennines as a cryptic Pleistocene refugium of the bark beetle Pityogenes chalcographus (Coleoptera: Curculionidae). Biological Journal of the Linnean Society, 2019, 127, 24-33.	1.6	2
26	Termination of pupal diapause in the pine processionary moth <i>Thaumetopoea pityocampa</i> Physiological Entomology, 2019, 44, 53-59.	1.5	22
27	Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. Journal of Pest Science, 2019, 92, 1-2.	3.7	13
28	Winter temperature predicts prolonged diapause in pine processionary moth species across their geographic range. Peerl, 2019, 7, e6530.	2.0	34
29	Temperature Alters the Response to Insecticides in Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2018, 111, 1306-1312.	1.8	10
30	Forest Insects and Climate Change. Current Forestry Reports, 2018, 4, 35-50.	7.4	185
31	Evidence of potential hybridization in the <i><scp>T</scp>haumetopoea pityocampaâ€wilkinsoni</i> complex. Agricultural and Forest Entomology, 2018, 20, 9-17.	1.3	11
32	Edible Insects and Other Chitin-Bearing Foods in Ethnic Peru: Accessibility, Nutritional Acceptance, and Food-Security Implications. Journal of Ethnobiology, 2018, 38, 424.	2.1	5
33	Deciphering the drivers of negative species–genetic diversity correlation in Alpine amphibians. Molecular Ecology, 2018, 27, 4916-4930.	3.9	14
34	Prepupal diapause synchronizes adult emergence in the pine processionary moth <i>Thaumetopoea pityocampa</i> (Lepidoptera: Notodontidae). Agricultural and Forest Entomology, 2018, 20, 582-588.	1,3	6
35	Plant phenotype affects oviposition behaviour of pine processionary moth and egg survival at the southern edge of its range. IForest, 2018, 11, 572-576.	1.4	5
36	Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecology, 2017, 28, 44-52.	1.6	44

3

#	Article	IF	CITATIONS
37	A total evidence phylogeny for the processionary moths of the genus <i>Thaumetopoea</i> (Lepidoptera: Notodontidae: Thaumetopoeinae). Cladistics, 2017, 33, 557-573.	3.3	10
38	Fine-scale phylogeography of Rana temporaria (Anura: Ranidae) in a putative secondary contact zone in the southern Alps. Biological Journal of the Linnean Society, 2017, 122, 824-837.	1.6	10
39	Processionary Moths and Associated Urtication Risk: Global Change–Driven Effects. Annual Review of Entomology, 2017, 62, 323-342.	11.8	48
40	Proteome Analysis of Urticating Setae From Thaumetopoea pityocampa (Lepidoptera: Notodontidae). Journal of Medical Entomology, 2017, 54, 1560-1566.	1.8	7
41	Pest categorisation of CephalciaÂlariciphila. EFSA Journal, 2017, 15, e05106.	1.8	1
42	Pest categorisation of Gilpinia hercyniae. EFSA Journal, 2017, 15, e05108.	1.8	0
43	Genetic differentiation of the pine processionary moth at the southern edge of its range: contrasting patterns between mitochondrial and nuclear markers. Ecology and Evolution, 2016, 6, 4274-4288.	1.9	13
44	Webâ€based automatic traps for early detection of alien woodâ€boring beetles. Entomologia Experimentalis Et Applicata, 2016, 160, 91-95.	1.4	14
45	Native and introduced parasitoids in the biocontrol of <i>Dryocosmus kuriphilus</i> in Veneto (Italy). EPPO Bulletin, 2016, 46, 275-285.	0.8	24
46	Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biological Invasions, 2016, 18, 2809-2821.	2.4	35
47	Tree colonization by the Asian longhorn beetle, <i>Anoplophora glabripennis</i> (Coleoptera:) Tj ETQq1 1 0.7843	314 rgBT /	Oyerlock 10°
48	Rapid on-site identification of the biocontrol agent of the Asian chestnut gall wasp. Biocontrol Science and Technology, 2016, 26, 1285-1297.	1.3	1
49	Development of Drosophila suzukii at low temperatures in mountain areas. Journal of Pest Science, 2016, 89, 667-678.	3.7	43
50	Defoliators in Native Insect Systems of the Mediterranean Basin. , 2016, , 29-45.		2
51	Invasive Sap-Sucker Insects in the Mediterranean Basin. , 2016, , 261-291.		7
52	Prolonged pupal diapause drives population dynamics of the pine processionary moth (Thaumetopoea) Tj ETQq0	0 <u>0 rg</u> BT /	Overlock 10
53	Foliage Feeding Invasive Insects: Defoliators and Gall Makers. , 2016, , 211-238.		8
54	Egg mortality in the cedar processionary moth, <i>Thaumetopoea bonjeani</i> (Lepidoptera:) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 Д f 50 62 Tc

#	Article	IF	CITATIONS
55	Spread of the introduced biocontrol agent Torymus sinensis in north-eastern Italy: dispersal through active flight or assisted by wind?. BioControl, 2016, 61, 127-139.	2.0	16
56	Native Sap-Sucker Insects in the Mediterranean Basin. , 2016, , 89-103.		8
57	Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA. PLoS ONE, 2016, 11, e0158519.	2.5	31
58	Contrasting Patterns of Host Adaptation in Two Egg Parasitoids of the Pine Processionary Moth (Lepidoptera: Thaumetopoeidae). Environmental Entomology, 2015, 44, 480-487.	1.4	6
59	Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. , 2015, , 81-161.		30
60	Exploring the role of wood waste landfills in early detection of non-native wood-boring beetles. Journal of Pest Science, 2015, 88, 563-572.	3.7	23
61	Improving the early detection of alien woodâ€boring beetles in ports and surrounding forests. Journal of Applied Ecology, 2015, 52, 50-58.	4.0	85
62	The allergenic protein Tha p 2 of processionary moths of the genus Thaumetopoea (Thaumetopoeinae,) Tj ETQq(0 0 0 rgBT 2.2	/Ogerlock 10
63	Natural History of the Processionary Moths (Thaumetopoea spp.): New Insights in Relation to Climate Change., 2015,, 15-79.		61
64	Insect – Tree Interactions in Thaumetopoea pityocampa. , 2015, , 265-310.		18
65	Ecological Responses of Parasitoids, Predators and Associated Insect Communities to the Climate-Driven Expansion of the Pine Processionary Moth., 2015,, 311-357.		12
66	Climate change and insect pest distribution range , 2015, , 1-15.		31
67	High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites. Carbohydrate Polymers, 2014, 113, 607-614.	10.2	10
68	Trapping wood boring beetles in Italian ports: a pilot study. Journal of Pest Science, 2014, 87, 61-69.	3.7	39
69	Tree rings and stable isotopes reveal the tree-history prior to insect defoliation on Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 2014, 319, 99-106.	3.2	12
70	Distribution of <scp>N</scp> orway spruce bark and woodâ€boring beetles along <scp>A</scp> lpine elevational gradients. Agricultural and Forest Entomology, 2014, 16, 111-118.	1.3	12
71	Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions. Tree Physiology, 2014, 34, 919-930.	3.1	41
72	Invasion by the chestnut gall wasp in Italy causes significant yield loss in <i>Castanea sativa</i> nut production. Agricultural and Forest Entomology, 2014, 16, 75-79.	1.3	79

#	Article	IF	CITATIONS
73	Size and dispersion of urticating setae in three species of processionary moths. Integrative Zoology, 2014, 9, 320-327.	2.6	16
74	Pod harvest index as a selection criterion to improve drought resistance in white pea bean. Field Crops Research, 2013, 148, 24-33.	5.1	74
75	Solar radiation directly affects larval performance of a forest insect. Ecological Entomology, 2013, 38, 553-559.	2.2	23
76	Effects of climate and density-dependent factors on population dynamics of the pine processionary moth in the Southern Alps. Climatic Change, 2013, 121, 701-712.	3 . 6	41
77	Geometrid outbreak waves travel across Europe. Journal of Animal Ecology, 2013, 82, 84-95.	2.8	49
78	Use of Loop-Mediated Isothermal Amplification for Detection of Ophiostoma clavatum, the Primary Blue Stain Fungus Associated with Ips acuminatus. Applied and Environmental Microbiology, 2013, 79, 2527-2533.	3.1	39
79	Spatioâ€temporal dynamics of an <i>lps acuminatus</i> outbreak and implications for management. Agricultural and Forest Entomology, 2013, 15, 34-42.	1.3	30
80	Winter bird numerical responses to a key defoliator in mountain pine forests. Forest Ecology and Management, 2013, 296, 90-97.	3.2	11
81	Steppingâ€stone expansion and habitat loss explain a peculiar genetic structure and distribution of a forest insect. Molecular Ecology, 2013, 22, 3362-3375.	3.9	12
82	Host and Phenology Shifts in the Evolution of the Social Moth Genus Thaumetopoea. PLoS ONE, 2013, 8, e57192.	2.5	24
83	Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiology, 2012, 32, 867-879.	3.1	48
84	Testing for hostâ€associated differentiation in two egg parasitoids of a forest herbivore. Entomologia Experimentalis Et Applicata, 2012, 145, 124-133.	1.4	10
85	Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 2012, 115, 327-341.	3.6	124
86	A review of pest surveillance techniques for detecting quarantine pests in <scp>E</scp> urope. EPPO Bulletin, 2012, 42, 515-551.	0.8	46
87	Monitoring of the pine sawyer beetle Monochamus galloprovincialis by pheromone traps in Italy. Phytoparasitica, 2012, 40, 329-336.	1.2	26
88	A Suite of Models to Support the Quantitative Assessment of Spread in Pest Risk Analysis. PLoS ONE, 2012, 7, e43366.	2.5	56
89	Life-history traits promoting outbreaks of the pine bark beetle lps acuminatus (Coleoptera:) Tj ETQq1 1 0.784314	ł rgBT /Ov 2.5	erlock 10 Tf 26
90	High mobility reduces betaâ€diversity among orthopteran communities – implications for conservation. Insect Conservation and Diversity, 2012, 5, 37-45.	3.0	20

#	Article	IF	Citations
91	Drought effects on damage by forest insects and pathogens: a metaâ€analysis. Global Change Biology, 2012, 18, 267-276.	9.5	381
92	Setae from the pine processionary moth (<i>Thaumetopoea pityocampa</i>) contain several relevant allergens. Contact Dermatitis, 2012, 67, 367-374.	1.4	47
93	A list of methods to detect arthropod quarantine pests in Europe*. EPPO Bulletin, 2012, 42, 93-94.	0.8	4
94	A protocol for analysing the costs and benefits of phytosanitary measures*. EPPO Bulletin, 2012, 42, 81-88.	0.8	10
95	A decision-support scheme that generates contingency plans and prioritizes action during pest outbreaks*. EPPO Bulletin, 2012, 42, 89-92.	0.8	6
96	Surveillance techniques for nonâ€native insect pest detection*. EPPO Bulletin, 2012, 42, 95-101.	0.8	5
97	Low temperature tolerance and starvation ability of the oak processionary moth: implications in a context of increasing epidemics. Agricultural and Forest Entomology, 2012, 14, 239-250.	1.3	15
98	Alien and native plant lifeâ€forms respond differently to human and climate pressures. Global Ecology and Biogeography, 2012, 21, 534-544.	5.8	65
99	Prevalence of cutaneous reactions to the pine processionary moth (Thaumetopoea pityocampa) in an adult population. Contact Dermatitis, 2011, 64, 220-228.	1.4	46
100	Urticating Hairs in Arthropods: Their Nature and Medical Significance. Annual Review of Entomology, 2011, 56, 203-220.	11.8	141
101	Limited emigration from an outbreak of a forest pest insect. Molecular Ecology, 2011, 20, 4606-4617.	3.9	10
102	Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biological Control, 2011, 56, 107-114.	3.0	60
103	Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biological Invasions, 2011, 13, 2275-2288.	2.4	66
104	Mitigating the impacts of the decline of traditional farming on mountain landscapes and biodiversity: a case study in the European Alps. Environmental Science and Policy, 2011, 14, 258-267.	4.9	107
105	The role of topography in structuring the demographic history of the pine processionary moth, <i>Thaumetopoea pityocampa</i> (Lepidoptera: Notodontidae). Journal of Biogeography, 2010, 37, 1478-1490.	3.0	38
106	Effects of colony size on larval performance in a processionary moth. Ecological Entomology, 2010, 35, 436-445.	2.2	21
107	Disentangling effects of habitat diversity and area on orthopteran species with contrasting mobility. Biological Conservation, 2010, 143, 2164-2171.	4.1	63
108	Effects of conventional and transgenic <i>Bacillus thuringiensis</i> ci>galleriaetoxin on <i>Exorista larvarum</i> (Diptera: Tachinidae), a parasitoid of forest defoliating Lepidoptera. Biocontrol Science and Technology, 2009, 19, 463-473.	1.3	21

#	Article	IF	CITATIONS
109	Quaternary history and contemporary patterns in a currently expanding species. BMC Evolutionary Biology, 2009, 9, 220.	3.2	83
110	PRATIQUE: a research project to enhance pest risk analysis techniques in the European Union. EPPO Bulletin, 2009, 39, 87-93.	0.8	52
111	Survival at low temperature of larvae of the pine processionary moth <i>Thaumetopoea pityocampa </i> from an area of range expansion. Agricultural and Forest Entomology, 2009, 11, 313-320.	1.3	44
112	Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland–forest mosaic: a multiâ€scale approach. Insect Conservation and Diversity, 2009, 2, 213-220.	3.0	96
113	Economic assessment of managing processionary moth in pine forests: A case-study in Portugal. Journal of Environmental Management, 2009, 90, 683-691.	7.8	43
114	Response of orthopteran diversity to abandonment of semi-natural meadows. Agriculture, Ecosystems and Environment, 2009, 132, 232-236.	5.3	101
115	Impact of farm size and topography on plant and insect diversity of managed grasslands in the Alps. Biological Conservation, 2009, 142, 394-403.	4.1	105
116	Insect Populations In Relation To Environmental Change In Forests Of Temperate Europe. , 2008, , 127-140.		2
117	Methods and detection limits in tracking a genetically modifiedPseudomonas sp. released in the pine phyllosphere. Annals of Microbiology, 2008, 58, 163-167.	2.6	4
118	Monitoring a genetically modified Pseudomonas sp. released on pine leaves reveals concerted successional patterns of the bacterial phyllospheric community. Antonie Van Leeuwenhoek, 2008, 94, 415-422.	1.7	3
119	Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa - wilkinsoni) Tj ETQq1 🛚	1 9.78431	4 rggT /Ove
120	Growth and survival of larvae of <i>Thaumetopoea pinivora </i> inside and outside a local outbreak area. Agricultural and Forest Entomology, 2008, 10, 225-232.	1.3	18
121	The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera,) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 2.8	/Overlock 1 208
122	Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy. Acta Oecologica, 2008, 33, 307-313.	1.1	23
123	ECOLOGICAL COSTS ON LOCAL ADAPTATION OF AN INSECT HERBIVORE IMPOSED BY HOST PLANTS AND ENEMIES. Ecology, 2008, 89, 1388-1398.	3.2	59
124	Forests and climate change - lessons from insects. IForest, 2008, 1, 1-5.	1.4	41
125	Water stress and insect defoliation promote the colonization of Quercus cerris by the fungus Biscogniauxia mediterranea. Forest Pathology, 2007, 37, 129-135.	1.1	37
126	Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology, 2007, 9, 65-72.	1.3	65

#	Article	IF	CITATIONS
127	Phylogeography of the pine processionary moth Thaumetopoea wilkinsoni in the Near East. Molecular Ecology, 2007, 16, 2273-2283.	3.9	47
128	Oviposition Sites of the Cypress Seed Bug Orsillus maculatus and Response of the Egg Parasitoid Telenomus gr. Floridanus. BioControl, 2007, 52, 9-24.	2.0	8
129	Extended plant protection by an epiphyticPseudomonassp. derivative carrying thecry9Aagene fromBacillus thuringiensis galleriaeagainst the pine processionary mothThaumetopoea pityocampa. Biocontrol Science and Technology, 2006, 16, 709-715.	1.3	5
130	Population monitoring of the pine processionary moth (Lepidoptera: Thaumetopoeidae) with pheromone-baited traps. Forest Ecology and Management, 2006, 235, 96-106.	3.2	46
131	Number of individuals and molecular markers to use in genetic differentiation studies. Molecular Ecology Notes, 2006, 6, 1010-1013.	1.7	35
132	A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 2006, 12, 662-671.	9.5	195
133	Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. Ecological Entomology, 2006, 31, 481-490.	2.2	70
134	Do sexual pheromone traps provide biased information of the local gene pool in the pine processionary moth?. Agricultural and Forest Entomology, 2005, 7, 127-132.	1.3	17
135	EXPANSION OF GEOGRAPHIC RANGE IN THE PINE PROCESSIONARY MOTH CAUSED BY INCREASED WINTER TEMPERATURES., 2005, 15, 2084-2096.		464
136	Geographic distribution and ecology of two species of <i>Orsillus</i> (Hemiptera: Lygaeidae) associated with cones of native and introduced Cupressaceae in Europe and the Mediterranean Basin. Canadian Entomologist, 2005, 137, 450-470.	0.8	6
137	Construction of a Pseudomonas sp. derivative carrying the cry9Aa gene from Bacillus thuringiensis and a proposal for new standard criteria to assess entomocidal properties of bacteria. Research in Microbiology, 2005, 156, 690-699.	2.1	12
138	Genetic structure and phylogeography of pine shoot beetle populations (Tomicus destruens and T.) Tj ETQq0 0 0	rgBT /Ove	rlgck 10 Tf 5
139	Impact and management of the eriophyoid mite Trisetacus juniperinus on the evergreen cypress Cupressus sempervirens. Agricultural and Forest Entomology, 2004, 6, 175-180.	1.3	9
140	Electrophysiological responses of Thaumetopoea pityocampa females to host volatiles: implications for host selection of active and inactive terpenes. Journal of Pest Science, 2003, 76, 103-107.	0.3	22
141	Serotinous cones of Cupressus sempervirens provide viable seeds in spite of high seed predation. Annals of Forest Science, 2003, 60, 781-787.	2.0	11
142	An association between the fungus Sphaeropsis sapinea and the cone bug Gastrodes grossipes in cones of Pinus nigra in Italy. Forest Pathology, 2002, 32, 241-247.	1.1	20
143	Impact and control of the cone tortricid Pseudococcyx tessulatana (Staudinger), damaging the cone crop of a selected clone of cypress (Cupressus sempervirens L.) in Italy. Journal of Pest Science, 2001, 74, 107-110.	0.3	2
144	Susceptibility of the pine processionary caterpillar Thaumetopoea pityocampa (Lepidoptera:) Tj ETQq0 0 0 rgBT /C	Overlock 1 2.5	.0 Tf 50 67 To

9

Annals of Applied Biology, 2001, 138, 255-261.

#	Article	IF	CITATIONS
145	Inter-tree distribution of the spruce web-spinning sawfly, Cephalcia abietis, at endemic density. Agricultural and Forest Entomology, 2000, 2, 291-296.	1.3	9
146	Title is missing!. BioControl, 2000, 45, 311-323.	2.0	50
147	Influence of silvicultural practices and population genetics on management of the spruce sawfly, Cephalcia arvensis. Forest Ecology and Management, 2000, 128, 159-166.	3.2	9
148	Efficient Transmission of an Introduced Pathogen Via an Ancient Insect-Fungus Association. Die Naturwissenschaften, 1999, 86, 479-483.	1.6	31
149	Monitoring spruce web-spinning sawflies Cephalcia spp.: the correlation between trap catches and soil sampling. Entomologia Experimentalis Et Applicata, 1998, 88, 211-217.	1.4	4
150	High genetic variability despite haplodiploidy in primitive sawflies of the genusCephalcia (Hymenoptera, Pamphiliidae). Experientia, 1996, 52, 516-521.	1.2	11
151	A survey of the spruce webâ€spinning sawflies of the genus <i>Cephalcia</i> Panzer in northâ€eastern China, with a guide to the identification of prepupae (Hym., Pamphiliidae). Journal of Applied Entomology, 1996, 120, 275-280.	1.8	2
152	Effects of entomopathogenic nematodes on the spruce webâ€spinning sawflyCephalcia arvensispanzer and its parasitoids in the field. Biocontrol Science and Technology, 1994, 4, 95-102.	1.3	24
153	Voltinism and diapause in the spruce webâ€spinning sawfly <i>Cephalcia arvensis</i> . Entomologia Experimentalis Et Applicata, 1994, 70, 105-113.	1.4	15
154	Climate, soils and Cephalcia arvensis outbreaks on Picea abies in the Italian Alps. Forest Ecology and Management, 1994, 68, 375-384.	3.2	18
155	Temperature-Dependent Growth Model for Eggs and Larvae of Cephalcia arvensis (Hymenoptera:) Tj ETQq1 1 0.	784314 rg	gBT/Overlock
156	Bionomics of the spruce web-spinning sawflyCephalcia arvensisPanzer (Hym., Pamphiliidae) in Northeastern Italy. Journal of Applied Entomology, 1993, 115, 52-61.	1.8	15
157	In vitro rearing ofOoencyrtus pityocampae [Hym., Encyrtidae], an egg parasitoid ofThaumetopoea pityocampa [Lep., Thaumetopoeidae]. Entomophaga, 1993, 38, 327-333.	0.2	15
158	Distribution and ecology ofLymantria monacha L. andCephalcia spp. in non-outbreak areas of Trentino (N-Italy). Anzeiger Fýr SchÃ d lingskunde, Pflanzenschutz, Umweltschutz, 1992, 65, 92-99.	0.1	7
159	Preliminary accounts on the rearing of Ooencyrtus pityocampae (Mercet) (Hym., Encyrtidae). Journal of Applied Entomology, 1990, 110, 121-127.	1.8	21
160	<i>Thaumetopoea pityocampa</i> (Den. & Den.	1.8	62
161	Field studies on the behaviour of two egg parasitoids of the pine processionary mothThaumetopoea pityocampa. Entomophaga, 1989, 34, 29-38.	0.2	40
162	Hostâ€plant relationships and population dynamics of the Pine Processionary Caterpillar ⟨i>Thaumetopoea pityocampa⟨i⟩ (Denis & Schiffermuller). Journal of Applied Entomology, 1988, 105, 393-402.	1.8	63

#	Article	IF	CITATIONS
163	Development time plasticity of the pine processionary moth (Thaumetopoea pityocampa) populations under laboratory conditions. Entomologia, 0, , .	1.0	6
164	A little further south: Host range and genetics of the Northern pine processionary moth, Thaumetopoea pinivora (Lepidoptera: Notodontidae) at the southern edge of its distribution. European Journal of Entomology, 0, 113, 200-206.	1.2	3
165	Pupal traits and adult emergence in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae) are affected by pupal density. European Journal of Entomology, 0, 116, 320-329.	1.2	3
166	Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 0, 58, 107-127.	1.0	28