
Andrea Battisti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EXPANSION OF GEOGRAPHIC RANGE IN THE PINE PROCESSIONARY MOTH CAUSED BY INCREASED WINTER TEMPERATURES. , 2005, 15, 2084-2096.		464
2	Drought effects on damage by forest insects and pathogens: a metaâ€analysis. Global Change Biology, 2012, 18, 267-276.	9.5	381
3	Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 2020, 18, 141-150.	4.0	241

The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

•		2.0	200
5	A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 2006, 12, 662-671.	9.5	195
6	Forest Insects and Climate Change. Current Forestry Reports, 2018, 4, 35-50.	7.4	185
7	Urticating Hairs in Arthropods: Their Nature and Medical Significance. Annual Review of Entomology, 2011, 56, 203-220.	11.8	141
8	Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 2012, 115, 327-341.	3.6	124
9	Mitigating the impacts of the decline of traditional farming on mountain landscapes and biodiversity: a case study in the European Alps. Environmental Science and Policy, 2011, 14, 258-267.	4.9	107
10	Impact of farm size and topography on plant and insect diversity of managed grasslands in the Alps. Biological Conservation, 2009, 142, 394-403.	4.1	105
11	Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa - wilkinsoni) Tj ETQq1 1	9.78431	4 ſ₿₿T /Ov
12	Response of orthopteran diversity to abandonment of semi-natural meadows. Agriculture, Ecosystems and Environment, 2009, 132, 232-236.	5.3	101
13	Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland–forest mosaic: a multiâ€scale approach. Insect Conservation and Diversity, 2009, 2, 213-220.	3.0	96
14	Improving the early detection of alien woodâ€boring beetles in ports and surrounding forests. Journal of Applied Ecology, 2015, 52, 50-58.	4.0	85
15	Quaternary history and contemporary patterns in a currently expanding species. BMC Evolutionary Biology, 2009, 9, 220.	3.2	83
16	Invasion by the chestnut gall wasp in Italy causes significant yield loss in <i>Castanea sativa</i> nut production. Agricultural and Forest Entomology, 2014, 16, 75-79.	1.3	79
17	Pod harvest index as a selection criterion to improve drought resistance in white pea bean. Field Crops Research, 2013, 148, 24-33.	5.1	74
18	Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. Ecological Entomology, 2006, 31, 481-490.	2.2	70

#	Article	IF	CITATIONS
19	Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biological Invasions, 2011, 13, 2275-2288.	2.4	66
20	Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology, 2007, 9, 65-72.	1.3	65
21	Alien and native plant lifeâ€forms respond differently to human and climate pressures. Global Ecology and Biogeography, 2012, 21, 534-544.	5.8	65
22	Hostâ€plant relationships and population dynamics of the Pine Processionary Caterpillar <i>Thaumetopoea pityocampa</i> (Denis & Schiffermuller). Journal of Applied Entomology, 1988, 105, 393-402.	1.8	63
23	Disentangling effects of habitat diversity and area on orthopteran species with contrasting mobility. Biological Conservation, 2010, 143, 2164-2171.	4.1	63
24	<i>Thaumetopoea pityocampa</i> (Den. & Schiff.) in Italy Bionomics and perspectives of integrated control ¹ ² . Journal of Applied Entomology, 1990, 110, 229-234.	1.8	62
25	Natural History of the Processionary Moths (Thaumetopoea spp.): New Insights in Relation to Climate Change. , 2015, , 15-79.		61
26	Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biological Control, 2011, 56, 107-114.	3.0	60
27	ECOLOGICAL COSTS ON LOCAL ADAPTATION OF AN INSECT HERBIVORE IMPOSED BY HOST PLANTS AND ENEMIES. Ecology, 2008, 89, 1388-1398.	3.2	59
28	A Suite of Models to Support the Quantitative Assessment of Spread in Pest Risk Analysis. PLoS ONE, 2012, 7, e43366.	2.5	56
29	PRATIQUE: a research project to enhance pest risk analysis techniques in the European Union. EPPO Bulletin, 2009, 39, 87-93.	0.8	52
30	Title is missing!. BioControl, 2000, 45, 311-323.	2.0	50
31	Geometrid outbreak waves travel across Europe. Journal of Animal Ecology, 2013, 82, 84-95.	2.8	49
32	Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiology, 2012, 32, 867-879.	3.1	48
33	Processionary Moths and Associated Urtication Risk: Global Change–Driven Effects. Annual Review of Entomology, 2017, 62, 323-342.	11.8	48
34	Phylogeography of the pine processionary moth Thaumetopoea wilkinsoni in the Near East. Molecular Ecology, 2007, 16, 2273-2283.	3.9	47
35	Setae from the pine processionary moth (<i>Thaumetopoea pityocampa</i>) contain several relevant allergens. Contact Dermatitis, 2012, 67, 367-374.	1.4	47
36	Population monitoring of the pine processionary moth (Lepidoptera: Thaumetopoeidae) with pheromone-baited traps. Forest Ecology and Management, 2006, 235, 96-106.	3.2	46

#	Article	IF	CITATIONS
37	Prevalence of cutaneous reactions to the pine processionary moth (Thaumetopoea pityocampa) in an adult population. Contact Dermatitis, 2011, 64, 220-228.	1.4	46
38	A review of pest surveillance techniques for detecting quarantine pests in <scp>E</scp> urope. EPPO Bulletin, 2012, 42, 515-551.	0.8	46
39	Survival at low temperature of larvae of the pine processionary moth <i>Thaumetopoea pityocampa </i> from an area of range expansion. Agricultural and Forest Entomology, 2009, 11, 313-320.	1.3	44
40	Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecology, 2017, 28, 44-52.	1.6	44
41	Economic assessment of managing processionary moth in pine forests: A case-study in Portugal. Journal of Environmental Management, 2009, 90, 683-691.	7.8	43
42	Development of Drosophila suzukii at low temperatures in mountain areas. Journal of Pest Science, 2016, 89, 667-678.	3.7	43
43	Effects of climate and density-dependent factors on population dynamics of the pine processionary moth in the Southern Alps. Climatic Change, 2013, 121, 701-712.	3.6	41
44	Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions. Tree Physiology, 2014, 34, 919-930.	3.1	41
45	Forests and climate change - lessons from insects. IForest, 2008, 1, 1-5.	1.4	41
46	Field studies on the behaviour of two egg parasitoids of the pine processionary mothThaumetopoea pityocampa. Entomophaga, 1989, 34, 29-38.	0.2	40
47	Use of Loop-Mediated Isothermal Amplification for Detection of Ophiostoma clavatum, the Primary Blue Stain Fungus Associated with Ips acuminatus. Applied and Environmental Microbiology, 2013, 79, 2527-2533.	3.1	39
48	Trapping wood boring beetles in Italian ports: a pilot study. Journal of Pest Science, 2014, 87, 61-69.	3.7	39
49	The role of topography in structuring the demographic history of the pine processionary moth, <i>Thaumetopoea pityocampa</i> (Lepidoptera: Notodontidae). Journal of Biogeography, 2010, 37, 1478-1490.	3.0	38
50	Water stress and insect defoliation promote the colonization of Quercus cerris by the fungus Biscogniauxia mediterranea. Forest Pathology, 2007, 37, 129-135.	1.1	37
51	Prolonged pupal diapause drives population dynamics of the pine processionary moth (Thaumetopoea) Tj ETQq1	1 0.78431 3.2	.4 ₃ rgBT /Ove
52	Number of individuals and molecular markers to use in genetic differentiation studies. Molecular Ecology Notes, 2006, 6, 1010-1013.	1.7	35
53	Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biological Invasions, 2016, 18, 2809-2821.	2.4	35
54	Winter temperature predicts prolonged diapause in pine processionary moth species across their geographic range. PeerJ, 2019, 7, e6530.	2.0	34

#	Article	IF	CITATIONS
55	Efficient Transmission of an Introduced Pathogen Via an Ancient Insect-Fungus Association. Die Naturwissenschaften, 1999, 86, 479-483.	1.6	31
56	Genetic structure and phylogeography of pine shoot beetle populations (Tomicus destruens and T.) Tj ETQq0 0 0	rgBT /Ove	erlgck 10 Tf 5
57	Climate change and insect pest distribution range , 2015, , 1-15.		31
58	Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA. PLoS ONE, 2016, 11, e0158519.	2.5	31
59	Spatioâ€ŧemporal dynamics of an <i>Ips acuminatus</i> outbreak and implications for management. Agricultural and Forest Entomology, 2013, 15, 34-42.	1.3	30
60	Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. , 2015, , 81-161.		30
61	Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 0, 58, 107-127.	1.0	28
62	Monitoring of the pine sawyer beetle Monochamus galloprovincialis by pheromone traps in Italy. Phytoparasitica, 2012, 40, 329-336.	1.2	26
63	Life-history traits promoting outbreaks of the pine bark beetle Ips acuminatus (Coleoptera:) Tj ETQq1 1 0.784314 553-561.	ł rgBT /Ov 2.5	erlock 10 Tf 26
64	Commodity risk assessment of black pine (PinusÂthunbergii Parl.) bonsai from Japan. EFSA Journal, 2019, 17, e05667.	1.8	26
65	Effects of entomopathogenic nematodes on the spruce webâ€spinning sawflyCephalcia arvensispanzer and its parasitoids in the field. Biocontrol Science and Technology, 1994, 4, 95-102.	1.3	24
66	Host and Phenology Shifts in the Evolution of the Social Moth Genus Thaumetopoea. PLoS ONE, 2013, 8, e57192.	2.5	24
67	Native and introduced parasitoids in the biocontrol of <i>Dryocosmus kuriphilus</i> in Veneto (Italy). EPPO Bulletin, 2016, 46, 275-285.	0.8	24
68	Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy. Acta Oecologica, 2008, 33, 307-313.	1.1	23
69	Solar radiation directly affects larval performance of a forest insect. Ecological Entomology, 2013, 38, 553-559.	2.2	23
70	Exploring the role of wood waste landfills in early detection of non-native wood-boring beetles. Journal of Pest Science, 2015, 88, 563-572.	3.7	23
71	Electrophysiological responses of Thaumetopoea pityocampa females to host volatiles: implications for host selection of active and inactive terpenes. Journal of Pest Science, 2003, 76, 103-107.	0.3	22
72	Termination of pupal diapause in the pine processionary moth <i>Thaumetopoea pityocampa</i> . Physiological Entomology, 2019, 44, 53-59.	1.5	22

#	Article	IF	CITATIONS
73	Preliminary accounts on the rearing ofOoencyrtus pityocampae(Mercet) (Hym., Encyrtidae). Journal of Applied Entomology, 1990, 110, 121-127.	1.8	21
74	Effects of conventional and transgenic <i>Bacillus thuringiensisgalleriae</i> toxin on <i>Exorista larvarum</i> (Diptera: Tachinidae), a parasitoid of forest defoliating Lepidoptera. Biocontrol Science and Technology, 2009, 19, 463-473.	1.3	21
75	Effects of colony size on larval performance in a processionary moth. Ecological Entomology, 2010, 35, 436-445.	2.2	21
76	Complex Insect–Pathogen Interactions in Tree Pandemics. Frontiers in Physiology, 2019, 10, 550.	2.8	21
77	An association between the fungus Sphaeropsis sapinea and the cone bug Gastrodes grossipes in cones of Pinus nigra in Italy. Forest Pathology, 2002, 32, 241-247.	1.1	20
78	High mobility reduces betaâ€diversity among orthopteran communities – implications for conservation. Insect Conservation and Diversity, 2012, 5, 37-45.	3.0	20
79	Climate, soils and Cephalcia arvensis outbreaks on Picea abies in the Italian Alps. Forest Ecology and Management, 1994, 68, 375-384.	3.2	18
80	Growth and survival of larvae of <i>Thaumetopoea pinivora</i> inside and outside a local outbreak area. Agricultural and Forest Entomology, 2008, 10, 225-232.	1.3	18
81	Insect – Tree Interactions in Thaumetopoea pityocampa. , 2015, , 265-310.		18
82	Do sexual pheromone traps provide biased information of the local gene pool in the pine processionary moth?. Agricultural and Forest Entomology, 2005, 7, 127-132.	1.3	17
83	The Risk of Bark and Ambrosia Beetles Associated with Imported Non-Coniferous Wood and Potential Horizontal Phytosanitary Measures. Forests, 2020, 11, 342.	2.1	17
84	Temperature Tolerance and Thermal Environment of European Seed Bugs. Insects, 2020, 11, 197.	2.2	17
85	Size and dispersion of urticating setae in three species of processionary moths. Integrative Zoology, 2014, 9, 320-327.	2.6	16
86	Spread of the introduced biocontrol agent Torymus sinensis in north-eastern Italy: dispersal through active flight or assisted by wind?. BioControl, 2016, 61, 127-139.	2.0	16
87	Bionomics of the spruce web-spinning sawflyCephalcia arvensisPanzer (Hym., Pamphiliidae) in Northeastern Italy. Journal of Applied Entomology, 1993, 115, 52-61.	1.8	15
88	ln vitro rearing ofOoencyrtus pityocampae [Hym., Encyrtidae], an egg parasitoid ofThaumetopoea pityocampa [Lep., Thaumetopoeidae]. Entomophaga, 1993, 38, 327-333.	0.2	15
89	Voltinism and diapause in the spruce webâ€spinning sawfly <i>Cephalcia arvensis</i> . Entomologia Experimentalis Et Applicata, 1994, 70, 105-113.	1.4	15
90	Low temperature tolerance and starvation ability of the oak processionary moth: implications in a context of increasing epidemics. Agricultural and Forest Entomology, 2012, 14, 239-250.	1.3	15

#	Article	IF	CITATIONS
91	Webâ€based automatic traps for early detection of alien woodâ€boring beetles. Entomologia Experimentalis Et Applicata, 2016, 160, 91-95.	1.4	14
92	Deciphering the drivers of negative species–genetic diversity correlation in Alpine amphibians. Molecular Ecology, 2018, 27, 4916-4930.	3.9	14
93	A population genetic study of the egg parasitoid Baryscapus servadeii reveals large scale automictic parthenogenesis and almost fixed homozygosity. Biological Control, 2019, 139, 104097.	3.0	14
94	First report of the alien ambrosia beetle <i>Cnestus mutilatus</i> and further finding of <i>Anisandrus maiche</i> in the European part of the EPPO region (Coleoptera: Curculionidae:) Tj ETQq0 0 0 rgB ⁻	Г /@s erlocl	k 10 Tf 50 63
95	Genetic differentiation of the pine processionary moth at the southern edge of its range: contrasting patterns between mitochondrial and nuclear markers. Ecology and Evolution, 2016, 6, 4274-4288.	1.9	13
96	Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. Journal of Pest Science, 2019, 92, 1-2.	3.7	13
97	Light Traps in Shipping Containers: A New Tool for the Early Detection of Insect Alien Species. Journal of Economic Entomology, 2020, 113, 1718-1724.	1.8	13
98	Construction of a Pseudomonas sp. derivative carrying the cry9Aa gene from Bacillus thuringiensis and a proposal for new standard criteria to assess entomocidal properties of bacteria. Research in Microbiology, 2005, 156, 690-699.	2.1	12
99	Steppingâ€stone expansion and habitat loss explain a peculiar genetic structure and distribution of a forest insect. Molecular Ecology, 2013, 22, 3362-3375.	3.9	12
100	Tree rings and stable isotopes reveal the tree-history prior to insect defoliation on Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 2014, 319, 99-106.	3.2	12
101	Distribution of <scp>N</scp> orway spruce bark and woodâ€boring beetles along <scp>A</scp> lpine elevational gradients. Agricultural and Forest Entomology, 2014, 16, 111-118.	1.3	12
102	Ecological Responses of Parasitoids, Predators and Associated Insect Communities to the Climate-Driven Expansion of the Pine Processionary Moth. , 2015, , 311-357.		12
103	High genetic variability despite haplodiploidy in primitive sawflies of the genusCephalcia (Hymenoptera, Pamphiliidae). Experientia, 1996, 52, 516-521.	1.2	11
104	Serotinous cones of Cupressus sempervirens provide viable seeds in spite of high seed predation. Annals of Forest Science, 2003, 60, 781-787.	2.0	11
105	Winter bird numerical responses to a key defoliator in mountain pine forests. Forest Ecology and Management, 2013, 296, 90-97.	3.2	11
106	Evidence of potential hybridization in the <i><scp>T</scp>haumetopoea pityocampaâ€wilkinsoni</i> complex. Agricultural and Forest Entomology, 2018, 20, 9-17.	1.3	11
107	Management of Popillia japonica in container-grown nursery stock in Italy. Phytoparasitica, 2022, 50, 83-89.	1.2	11
108	Commodity risk assessment of bonsai plants from China consisting of Pinus parviflora grafted on Pinus thunbergii. EFSA Journal, 2022, 20, e07077.	1.8	11

Andrea Battisti

#	Article	IF	CITATIONS
109	Limited emigration from an outbreak of a forest pest insect. Molecular Ecology, 2011, 20, 4606-4617.	3.9	10
110	Testing for hostâ€associated differentiation in two egg parasitoids of a forest herbivore. Entomologia Experimentalis Et Applicata, 2012, 145, 124-133.	1.4	10
111	A protocol for analysing the costs and benefits of phytosanitary measures*. EPPO Bulletin, 2012, 42, 81-88.	0.8	10
112	High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites. Carbohydrate Polymers, 2014, 113, 607-614.	10.2	10
113	A total evidence phylogeny for the processionary moths of the genus <i>Thaumetopoea</i> (Lepidoptera: Notodontidae: Thaumetopoeinae). Cladistics, 2017, 33, 557-573.	3.3	10
114	Fine-scale phylogeography of Rana temporaria (Anura: Ranidae) in a putative secondary contact zone in the southern Alps. Biological Journal of the Linnean Society, 2017, 122, 824-837.	1.6	10
115	Temperature Alters the Response to Insecticides in Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2018, 111, 1306-1312.	1.8	10
116	Inter-tree distribution of the spruce web-spinning sawfly, Cephalcia abietis, at endemic density. Agricultural and Forest Entomology, 2000, 2, 291-296.	1.3	9
117	Influence of silvicultural practices and population genetics on management of the spruce sawfly, Cephalcia arvensis. Forest Ecology and Management, 2000, 128, 159-166.	3.2	9
118	Susceptibility of the pine processionary caterpillar Thaumetopoea pityocampa (Lepidoptera:) Tj ETQq0 0 0 rgBT / Annals of Applied Biology, 2001, 138, 255-261.	Overlock 2.5	10 Tf 50 387 9
119	Impact and management of the eriophyoid mite Trisetacus juniperinus on the evergreen cypress Cupressus sempervirens. Agricultural and Forest Entomology, 2004, 6, 175-180.	1.3	9
120	Tree colonization by the Asian longhorn beetle, <i>Anoplophora glabripennis</i> (Coleoptera:) Tj ETQq0 0 0 rgB1	- Qverlocl	k 10 Tf 50 30
121	Spatial orientation of social caterpillars is influenced by polarized light. Biology Letters, 2021, 17, 20200736.	2.3	9
122	Occurrence, ecological function and medical importance of dermestid beetle hastisetae. PeerJ, 2020, 8, e8340.	2.0	9
123	Oviposition Sites of the Cypress Seed Bug Orsillus maculatus and Response of the Egg Parasitoid Telenomus gr. Floridanus. BioControl, 2007, 52, 9-24.	2.0	8
124	The allergenic protein Tha p 2 of processionary moths of the genus Thaumetopoea (Thaumetopoeinae,) Tj ETQqC) 0.0.rgBT 2.2	/Oyerlock 10
125	Foliage Feeding Invasive Insects: Defoliators and Gall Makers. , 2016, , 211-238.		8
	Postharvest short cold temperature treatment to preserve fruit quality after Drosophila suzukii		

Postharvest short cold temperature treatment to preserve fruit quality after Drosophila suzukii damage. International Journal of Pest Management, 2020, 66, 23-30.

1.8 8

#	Article	IF	CITATIONS
127	Movement behaviour of two social urticating caterpillars in opposite hemispheres. Movement Ecology, 2020, 8, 4.	2.8	8
128	Native Sap-Sucker Insects in the Mediterranean Basin. , 2016, , 89-103.		8
129	Distribution and ecology ofLymantria monacha L. andCephalcia spp. in non-outbreak areas of Trentino (N-Italy). Anzeiger Für SchÃ d lingskunde, Pflanzenschutz, Umweltschutz, 1992, 65, 92-99.	0.1	7
130	Invasive Sap-Sucker Insects in the Mediterranean Basin. , 2016, , 261-291.		7
131	Proteome Analysis of Urticating Setae From Thaumetopoea pityocampa (Lepidoptera: Notodontidae). Journal of Medical Entomology, 2017, 54, 1560-1566.	1.8	7
132	Temperature-Dependent Growth Model for Eggs and Larvae of Cephalcia arvensis (Hymenoptera:) Tj ETQq0 0 0 r	gBT /Overl 1.4	ock 10 Tf 50
133	Geographic distribution and ecology of two species of <i>Orsillus</i> (Hemiptera: Lygaeidae) associated with cones of native and introduced Cupressaceae in Europe and the Mediterranean Basin. Canadian Entomologist, 2005, 137, 450-470.	0.8	6
134	A decision-support scheme that generates contingency plans and prioritizes action during pest outbreaks*. EPPO Bulletin, 2012, 42, 89-92.	0.8	6
135	Development time plasticity of the pine processionary moth (Thaumetopoea pityocampa) populations under laboratory conditions. Entomologia, 0, , .	1.0	6
136	Contrasting Patterns of Host Adaptation in Two Egg Parasitoids of the Pine Processionary Moth (Lepidoptera: Thaumetopoeidae). Environmental Entomology, 2015, 44, 480-487.	1.4	6
137	Prepupal diapause synchronizes adult emergence in the pine processionary moth <i>Thaumetopoea pityocampa</i> (Lepidoptera: Notodontidae). Agricultural and Forest Entomology, 2018, 20, 582-588.	1.3	6
138	Invasion of <i>Popillia japonica</i> in Lombardy, Italy: Interactions with soil entomopathogenic nematodes and native grubs. Agricultural and Forest Entomology, 2022, 24, 600-608.	1.3	6
139	Extended plant protection by an epiphyticPseudomonassp. derivative carrying thecry9Aagene fromBacillus thuringiensis galleriaeagainst the pine processionary mothThaumetopoea pityocampa. Biocontrol Science and Technology, 2006, 16, 709-715.	1.3	5
140	Surveillance techniques for nonâ€native insect pest detection*. EPPO Bulletin, 2012, 42, 95-101.	0.8	5
141	Edible Insects and Other Chitin-Bearing Foods in Ethnic Peru: Accessibility, Nutritional Acceptance, and Food-Security Implications, Journal of Ethnobiology, 2018, 38, 424.	2.1	5

142	Egg mass structure of the processionary caterpillar Ochrogaster lunifer (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50	147 Td (No
	(Hymenoptera: Chalcidoidea: Eupelmidae)?. Austral Entomology, 2019, 58, 810-815.	1.4	5

143	Response of the egg parasitoids of the pine processionary moth toÂhost density and forest cover at the southern edge of the range. Agricultural and Forest Entomology, 2021, 23, 212-221.	1.3	5
144	Modelling diapause termination and phenology of the Japanese beetle, Popillia japonica. Journal of Pest Science, 2022, 95, 869-880.	3.7	5

#	Article	IF	CITATIONS
145	Chemical control of Popillia japonica adults on high-value crops and landscape plants of northern Italy. Crop Protection, 2021, 150, 105808.	2.1	5
146	Plant phenotype affects oviposition behaviour of pine processionary moth and egg survival at the southern edge of its range. IForest, 2018, 11, 572-576.	1.4	5
147	From refugia to contact: Pine processionary moth hybrid zone in a complex biogeographic setting. Ecology and Evolution, 2020, 10, 1623-1638.	1.9	5
148	Monitoring spruce web-spinning sawflies Cephalcia spp.: the correlation between trap catches and soil sampling. Entomologia Experimentalis Et Applicata, 1998, 88, 211-217.	1.4	4
149	Methods and detection limits in tracking a genetically modifiedPseudomonas sp. released in the pine phyllosphere. Annals of Microbiology, 2008, 58, 163-167.	2.6	4
150	A list of methods to detect arthropod quarantine pests in Europe*. EPPO Bulletin, 2012, 42, 93-94.	0.8	4
151	Egg mortality in the cedar processionary moth, <i>Thaumetopoea bonjeani</i> (Lepidoptera:) Tj ETQq1 1 0.78431	4 <u>rg</u> BT /O	verlock 10 Tf
152	Performance of Trichopria drosophilae (Hymenoptera: Diapriidae), a Generalist Parasitoid of Drosophila suzukii (Diptera: Drosophilidae), at Low Temperature. Journal of Insect Science, 2020, 20, .	1.5	4
153	Monitoring a genetically modified Pseudomonas sp. released on pine leaves reveals concerted successional patterns of the bacterial phyllospheric community. Antonie Van Leeuwenhoek, 2008, 94, 415-422.	1.7	3
154	Entangling the Enemy: Ecological, Systematic, and Medical Implications of Dermestid Beetle Hastisetae. Insects, 2021, 12, 436.	2.2	3
155	A little further south: Host range and genetics of the Northern pine processionary moth, Thaumetopoea pinivora (Lepidoptera: Notodontidae) at the southern edge of its distribution. European Journal of Entomology, 0, 113, 200-206.	1.2	3
156	Pupal traits and adult emergence in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae) are affected by pupal density. European Journal of Entomology, 0, 116, 320-329.	1.2	3
157	A survey of the spruce webâ€spinning sawflies of the genus <i>Cephalcia</i> Panzer in northâ€eastern China, with a guide to the identification of prepupae (Hym., Pamphiliidae). Journal of Applied Entomology, 1996, 120, 275-280.	1.8	2
158	Impact and control of the cone tortricid Pseudococcyx tessulatana (Staudinger), damaging the cone crop of a selected clone of cypress (Cupressus sempervirens L.) in Italy. Journal of Pest Science, 2001, 74, 107-110.	0.3	2
159	Insect Populations In Relation To Environmental Change In Forests Of Temperate Europe. , 2008, , 127-140.		2
160	Defoliators in Native Insect Systems of the Mediterranean Basin. , 2016, , 29-45.		2
161	The Apennines as a cryptic Pleistocene refugium of the bark beetle Pityogenes chalcographus (Coleoptera: Curculionidae). Biological Journal of the Linnean Society, 2019, 127, 24-33.	1.6	2
162	Rapid on-site identification of the biocontrol agent of the Asian chestnut gall wasp. Biocontrol Science and Technology, 2016, 26, 1285-1297.	1.3	1

#	Article	IF	CITATIONS
163	Pest categorisation of CephalciaÂlariciphila. EFSA Journal, 2017, 15, e05106.	1.8	1
164	Is body size a good indicator of fecundity in the genus <i>Thaumetopoea</i> ? A story told by two intrageneric Mediterranean forest defoliators. Agricultural and Forest Entomology, 2021, 23, 23-31.	1.3	1
165	Natural Enemies of the Cedar Processionary Moth, Thaumetopoea bonjeani (Lepidoptera:) Tj ETQq1 1 0.784314	rgBT /Ovei 0.6	rlock 10 Tf 50
166	Pest categorisation of Gilpinia hercyniae. EFSA Journal, 2017, 15, e05108.	1.8	0

11