Agnieszka GaÅ,uszka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591304/publications.pdf

Version: 2024-02-01

72 papers

7,874 citations

30 h-index 70 g-index

73 all docs

73 docs citations

73 times ranked

8030 citing authors

#	Article	IF	Citations
1	The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 2016, 351, aad2622.	6.0	1,543
2	The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends in Analytical Chemistry, 2013, 50, 78-84.	5 . 8	1,293
3	Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC - Trends in Analytical Chemistry, 2012, 37, 61-72.	5 . 8	1,228
4	The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene, 2016, 13, 4-17.	1.6	622
5	Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 2015, 20, 10928-10946.	1.7	334
6	The Working Group on the Anthropocene: Summary of evidence and interim recommendations. Anthropocene, 2017, 19, 55-60.	1.6	310
7	The Characteristics, Occurrence, and Geochemical Behavior of Rare Earth Elements in the Environment: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 429-471.	6.6	283
8	Stratigraphic and Earth System approaches to defining the Anthropocene. Earth's Future, 2016, 4, 324-345.	2.4	162
9	A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 2007, 52, 861-870.	1.2	157
10	Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: Where and how to look for potential candidates. Earth-Science Reviews, 2018, 178, 379-429.	4.0	153
11	Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch?. Bulletin of the Atomic Scientists, 2015, 71, 46-57.	0.2	135
12	Moving your laboratories to the field $\hat{a}\in$ "Advantages and limitations of the use of field portable instruments in environmental sample analysis. Environmental Research, 2015, 140, 593-603.	3.7	133
13	Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Communications Earth & Environment, 2020, 1, .	2.6	101
14	Geochemical background - an environmental perspective. Mineralogia, 2011, 42, 7-17.	0.4	95
15	Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environment International, 2002, 28, 303-313.	4.8	94
16	Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: WiŠnià wka case study, south-central Poland. Environmental Science and Pollution Research, 2016, 23, 24943-24959.	2.7	65
17	The Anthropocene: Comparing Its Meaning in Geology (Chronostratigraphy) with Conceptual Approaches Arising in Other Disciplines. Earth's Future, 2021, 9, e2020EF001896.	2.4	61
18	The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environmental Monitoring and Assessment, 2011, 176, 451-464.	1.3	60

#	Article	IF	Citations
19	Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland). Environmental Pollution, 2019, 244, 898-906.	3.7	60
20	Colonization of the Americas, †Little Ice Age†climate, and bomb-produced carbon: Their role in defining the Anthropocene. Infrastructure Asset Management, 2015, 2, 117-127.	1.2	57
21	Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska. Atmospheric Environment, 2009, 43, 1464-1473.	1.9	56
22	The Chemistry of Soils, Rocks and Plant Bioindicators in Three Ecosystems of the Holy Cross Mountains, Poland. Environmental Monitoring and Assessment, 2005, 110, 55-70.	1.3	50
23	Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from different forest communities: A case study, south-central Poland. Chemosphere, 2007, 67, 1415-1422.	4.2	47
24	Geochemical background of potentially toxic trace elements in soils of the historic copper mining area: a case study from Miedzianka Mt., Holy Cross Mountains, south-central Poland. Environmental Earth Sciences, 2015, 74, 4589-4605.	1.3	41
25	Prospecting for hyperaccumulators of trace elements: a review. Critical Reviews in Biotechnology, 2015, 35, 522-532.	5.1	40
26	Assessing the Anthropocene with geochemical methods. Geological Society Special Publication, 2014, 395, 221-238.	0.8	39
27	The study of rare earth elements in farmer's well waters of the PodwiÅniówka acid mine drainage area (south-central Poland). Environmental Monitoring and Assessment, 2014, 186, 1609-1622.	1.3	36
28	Geochemistry and stable sulfur and oxygen isotope ratios of the PodwiÅ $ ni\tilde{A}^3 wka pit pond water generated by acid mine drainage (Holy Cross Mountains, south-central Poland). Applied Geochemistry, 2008, 23, 3620-3634.$	1.4	35
29	Seasonal changes in organotin compounds in water and sediment samples from the semi-closed Port of Gdynia. Science of the Total Environment, 2012, 441, 57-66.	3.9	32
30	Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (south-central Poland). Applied Geochemistry, 2018, 95, 45-56.	1.4	31
31	Arsenic in the Wiśniówka acid mine drainage area (south-central Poland) – Mineralogy, hydrogeochemistry, remediation. Chemical Geology, 2018, 493, 491-503.	1.4	31
32	Title is missing!. Water, Air, and Soil Pollution, 2001, 129, 369-386.	1.1	26
33	The Use of Stable Sulfur, Oxygen and Hydrogen Isotope Ratios as Geochemical Tracers of Sulfates in the PodwiÅniówka Acid Drainage Area (South-Central Poland). Aquatic Geochemistry, 2013, 19, 261-280.	1.5	24
34	Glass microspheres as a potential indicator of the Anthropocene: A first study in an urban environment. Holocene, 2018, 28, 323-329.	0.9	24
35	Middle Oxfordian–Lower Kimmeridgian chert nodules in the Holy Cross Mountains, south-central Poland. Sedimentary Geology, 2006, 187, 11-28.	1.0	23
36	Pesticide burial grounds in Poland: A review. Environment International, 2011, 37, 1265-1272.	4.8	23

#	Article	IF	CITATIONS
37	Geochemical anomalies of trace elements in unremediated soils of Mt. Karcz \tilde{A}^3 wka, a historic lead mining area in the city of Kielce, Poland. Science of the Total Environment, 2018, 639, 397-405.	3.9	23
38	Assessing the impact of Serwis mine tailings site on farmers' wells using element and isotope signatures (Holy Cross Mountains, south-central Poland). Environmental Earth Sciences, 2015, 74, 629-647.	1.3	19
39	Geochemical background of potentially toxic trace elements in reclaimed soils of the abandoned pyrite–uranium mine (south-central Poland). International Journal of Environmental Science and Technology, 2016, 13, 2649-2662.	1.8	19
40	Trace elements and stable sulfur isotopes in plants of acid mine drainage area: Implications for revegetation of degraded land. Journal of Environmental Sciences, 2020, 94, 128-136.	3.2	19
41	Abundance and fate of thallium and its stable isotopes in the environment. Reviews in Environmental Science and Biotechnology, 2021, 20, 5-30.	3.9	18
42	The use of the barbell cluster ANOVA design for the assessment of environmental pollution: a case study, Wigierski National Park, NE Poland. Environmental Pollution, 2005, 133, 213-223.	3.7	17
43	Surface sediments pollution due to shipwreck s/s "Stuttgart†a multidisciplinary approach. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1797-1807.	1.9	17
44	Significance of the long-term biomonitoring studies for understanding the impact of pollutants on the environment based on a synthesis of 25-year biomonitoring in the Holy Cross Mountains, Poland. Environmental Science and Pollution Research, 2021, 28, 10413-10435.	2.7	16
45	The role of analytical chemistry in the study of the Anthropocene. TrAC - Trends in Analytical Chemistry, 2017, 97, 146-152.	5.8	15
46	The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies. Environmental Chemistry Letters, 2011, 9, 323-329.	8.3	14
47	The use of gadolinium and europium concentrations as contaminant tracers in the Nida River watershed in south-central Poland. Geological Quarterly, 2016, 60, .	0.1	14
48	A consideration of polychlorinated biphenyls as a chemostratigraphic marker of the Anthropocene. Infrastructure Asset Management, 2020, 7, 138-158.	1.2	13
49	Glass microspheres in road dust of the city of Kielce (south-central Poland) as markers of traffic-related pollution. Journal of Hazardous Materials, 2021, 413, 125355.	6.5	13
50	Mercury in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska: Understanding the origin of pollution sources. Ecotoxicology and Environmental Safety, 2010, 73, 1345-1351.	2.9	12
51	Remobilization of polychlorinated biphenyls from sediment and its consequences for their transport in river waters. Environmental Monitoring and Assessment, 2013, 185, 4449-4459.	1.3	11
52	An impact of moss sample cleaning on uncertainty of analytical measurement and pattern profiles of rare earth elements. Chemosphere, 2017, 188, 190-198.	4.2	11
53	Abundance and fate of glass microspheres in river sediments and roadside soils: Lessons from the Świętokrzyskie region case study (south-central Poland). Science of the Total Environment, 2022, 821, 153410.	3.9	11
54	Gorceixite from the Upper Cambrian Rocks of the podwiÅniówka Mine Pit, Holy Cross Mountains (South-Central Poland). Mineralogia, 2007, 38, 171-184.	0.4	10

#	Article	IF	Citations
55	Seasonal changes in concentrations of trace elements and rare earth elements in shoot samples of Juncus effusus L. collected from natural habitats in the Holy Cross Mountains, south-central Poland. Chemosphere, 2019, 219, 954-960.	4.2	10
56	Chemical and isotopic variations in the WiÅniówka MaÅ,a mine pit water, Holy Cross Mountains (south-central Poland). Environmental Geology, 2009, 57, 29-40.	1.2	9
57	A new two-step screening method for prospecting of trace element accumulating plants. International Journal of Environmental Science and Technology, 2015, 12, 3071-3078.	1.8	9
58	Comprehensive stabilization of all streams of solid residues formed during sewage sludge thermal treatment $\hat{a} \in \text{``Case study. Journal of Cleaner Production, 2018, 178, 757-767.}$	4.6	9
59	Green Analytical Chemistry: Summary of Existing Knowledge and Future Trends. Green Chemistry and Sustainable Technology, 2019, , 431-449.	0.4	8
60	The origin of pyrite mineralization: Implications for Late Cambrian geology of the Holy Cross Mountains (south-central Poland). Sedimentary Geology, 2019, 390, 45-61.	1.0	8
61	Presence and possible origin of positive Eu anomaly in shoot samples of Juncus effusus L. Journal of Trace Elements in Medicine and Biology, 2020, 58, 126432.	1.5	8
62	Groundwater quality as a geoindicator of organochlorine pesticide contamination after pesticide tomb reclamation: a case study of Franciszkowo, northwestern Poland. Environmental Earth Sciences, 2012, 67, 2441-2447.	1.3	7
63	Assessing soil sampling uncertainty in heterogeneous historic metal ore mining sites. Accreditation and Quality Assurance, 2015, 20, 163-170.	0.4	6
64	A comparison of green chemistry metrics for two methods of bromination and nitration of bis-pyrazolo[3,4-b;4â \in 2,3â \in 2-e]pyridines. Heterocyclic Communications, 2011, 17, .	0.6	4
65	Heterogeneous areas—identification of outliers and calculation of soil sampling uncertainty using the modified RANOVA method. Environmental Monitoring and Assessment, 2016, 188, 581.	1.3	4
66	Analysis and Bioanalysis: an Effective Tool for Data Collection of Environmental Conditions and Processes. Polish Journal of Environmental Studies, 2016, 25, 45-53.	0.6	4
67	Xenotime from the PodwiÅɔniówka mine pit, Holy Cross Mountains (South-Central Poland). Mineralogia, 2010, 41, .	0.4	3
68	Characterization of Microbial Communities in Acidified, Sulfur Containing Soils. Polish Journal of Microbiology, 2017, 66, 509-517.	0.6	3
69	The use of FPXRF in the determinations of selected trace elements in historic mining soils in the Holy Cross Mts., south-central Poland. Geological Quarterly, 2015, 59, .	0.1	3
70	Bioavailability of selected trace and rare earth elements to Juncus effusus L.: the potential role of de-icing chlorides in the roadside environment. Plant and Soil, 2022, 472, 641.	1.8	3
71	The 1st Conference on Contemporary Problems of Geochemistry. Mineralogia, 2011, 42, 3-5.	0.4	0
72	Geochemistry and petrology of striped chert as a provenance tool for artefacts from the KRZEMIONKI NEOLITHIC mining area (Poland). Archaeometry, 2022, 64, 1093-1109.	0.6	0