Masahiro Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591197/publications.pdf

Version: 2024-02-01

97 2,827 30 49
papers citations h-index g-index

97 97 97 2557

times ranked

docs citations

all docs

citing authors

#	Article	IF	CITATIONS
1	Smart Near-Infrared Fluorescence Probes with Donor–Acceptor Structure for in Vivo Detection of β-Amyloid Deposits. Journal of the American Chemical Society, 2014, 136, 3388-3394.	13.7	242
2	11C-labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer's disease. Nuclear Medicine and Biology, 2003, 30, 565-571.	0.6	212
3	Benzofuran derivatives as Aβ-aggregate-specific imaging agents for Alzheimer's disease. Nuclear Medicine and Biology, 2002, 29, 633-642.	0.6	129
4	Novel Benzofuran Derivatives for PET Imaging of \hat{l}^2 -Amyloid Plaques in Alzheimer's Disease Brains. Journal of Medicinal Chemistry, 2006, 49, 2725-2730.	6.4	100
5	Radioiodinated Flavones for in Vivo Imaging of \hat{I}^2 -Amyloid Plaques in the Brain. Journal of Medicinal Chemistry, 2005, 48, 7253-7260.	6.4	81
6	Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer's brains. Bioorganic and Medicinal Chemistry, 2007, 15, 6802-6809.	3.0	78
7	Novel ¹⁸ F-Labeled Benzofuran Derivatives with Improved Properties for Positron Emission Tomography (PET) Imaging of β-Amyloid Plaques in Alzheimer's Brains. Journal of Medicinal Chemistry, 2011, 54, 2971-2979.	6.4	77
8	Synthesis and Evaluation of Novel Chalcone Derivatives with $\langle \sup 99m \langle \sup Tc Re$ Complexes as Potential Probes for Detection of \hat{l}^2 -Amyloid Plaques. ACS Chemical Neuroscience, 2010, 1, 598-607.	3.5	71
9	Aurones serve as probes of β-amyloid plaques in Alzheimer's disease. Biochemical and Biophysical Research Communications, 2007, 361, 116-121.	2.1	70
10	Rhodanine and Thiohydantoin Derivatives for Detecting Tau Pathology in Alzheimer's Brains. ACS Chemical Neuroscience, 2011, 2, 269-275.	3.5	68
11	Technetium-99m Labeled Pyridyl Benzofuran Derivatives as Single Photon Emission Computed Tomography Imaging Probes for β-Amyloid Plaques in Alzheimer's Brains. Journal of Medicinal Chemistry, 2012, 55, 2279-2286.	6.4	63
12	Fluoro-pegylated Chalcones as Positron Emission Tomography Probes for in Vivo Imaging of β-Amyloid Plaques in Alzheimer's Disease. Journal of Medicinal Chemistry, 2009, 52, 6394-6401.	6.4	62
13	Push–pull benzothiazole derivatives as probes for detecting β-amyloid plaques in Alzheimer's brains. Bioorganic and Medicinal Chemistry, 2009, 17, 7002-7007.	3.0	56
14	Novel Cyclopentadienyl Tricarbonyl Complexes of \sup 99m $\left \text{Sup} \right $ 7c Mimicking Chalcone as Potential Single-Photon Emission Computed Tomography Imaging Probes for \hat{I}^2 -Amyloid Plaques in Brain. Journal of Medicinal Chemistry, 2013, 56, 471-482.	6.4	54
15	Development of novel \hat{l}^2 -amyloid probes based on 3,5-diphenyl-1,2,4-oxadiazole. Bioorganic and Medicinal Chemistry, 2008, 16, 6867-6872.	3.0	53
16	In vivo fluorescence imaging of β-amyloid plaques with push–pull dimethylaminothiophene derivatives. Chemical Communications, 2015, 51, 17124-17127.	4.1	52
17	Structure–activity relationship of chalcones and related derivatives as ligands for detecting of β-amyloid plaques in the brain. Bioorganic and Medicinal Chemistry, 2007, 15, 6388-6396.	3.0	48
18	Novel Benzothiazole Derivatives as Fluorescent Probes for Detection of \hat{l}^2 -Amyloid and \hat{l}_\pm -Synuclein Aggregates. ACS Chemical Neuroscience, 2017, 8, 1656-1662.	3.5	48

#	Article	IF	Citations
19	Recent advances in molecular imaging probes for β-amyloid plaques. MedChemComm, 2015, 6, 391-402.	3.4	46
20	99mTc/Re complexes based on flavone and aurone as SPECT probes for imaging cerebral β-amyloid plaques. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5743-5748.	2.2	45
21	SPECT Imaging Agents for Detecting Cerebral β-Amyloid Plaques. International Journal of Molecular Imaging, 2011, 2011, 1-12.	1.3	42
22	Cancer radiotheranostics targeting carbonic anhydrase-IX with ¹¹¹ In- and ⁹⁰ Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics, 2018, 8, 2992-3006.	10.0	42
23	Structure–Activity Relationship Study of Heterocyclic Phenylethenyl and Pyridinylethenyl Derivatives as Tau-Imaging Agents That Selectively Detect Neurofibrillary Tangles in Alzheimer's Disease Brains. Journal of Medicinal Chemistry, 2015, 58, 7241-7257.	6.4	41
24	Development of Novel 123I-Labeled Pyridyl Benzofuran Derivatives for SPECT Imaging of β-Amyloid Plaques in Alzheimer's Disease. PLoS ONE, 2013, 8, e74104.	2.5	39
25	Phenyldiazenyl benzothiazole derivatives as probes for in vivo imaging of neurofibrillary tangles in Alzheimer's disease brains. MedChemComm, 2011, 2, 596.	3.4	38
26	Development of Positron-Emission Tomography/Single-Photon Emission Computed Tomography Imaging Probes for in Vivo Detection of .BETAAmyloid Plaques in Alzheimer's Brains. Chemical and Pharmaceutical Bulletin, 2009, 57, 1029-1039.	1.3	37
27	Synthesis and biological evaluation of indole-chalcone derivatives as \hat{l}^2 -amyloid imaging probe. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 980-982.	2.2	37
28	Synthesis and Biologic Evaluation of Novel ¹⁸ F-Labeled Probes Targeting Prostate-Specific Membrane Antigen for PET of Prostate Cancer. Journal of Nuclear Medicine, 2016, 57, 1978-1984.	5.0	36
29	A dual fluorinated and iodinated radiotracer for PET and SPECT imaging of \hat{l}^2 -amyloid plaques in the brain. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6519-6522.	2.2	35
30	Synthesis and biological evaluation of novel oxindole derivatives for imaging neurofibrillary tangles in Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5700-5703.	2.2	33
31	Feasibility of poly(ethylene glycol) derivatives as diagnostic drug carriers for tumor imaging. Journal of Controlled Release, 2016, 226, 115-123.	9.9	32
32	Synthesis and biological evaluation of (E)-3-styrylpyridine derivatives as amyloid imaging agents for Alzheimer's disease. Nuclear Medicine and Biology, 2005, 32, 329-335.	0.6	27
33	Indocyanine Green-Labeled Polysarcosine for in Vivo Photoacoustic Tumor Imaging. Bioconjugate Chemistry, 2017, 28, 1024-1030.	3.6	27
34	Novel quinoxaline derivatives for in vivo imaging of \hat{l}^2 -amyloid plaques in the brain. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4193-4196.	2.2	26
35	Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid \hat{l}^2 plaques by SPECT. Bioorganic and Medicinal Chemistry, 2014, 22, 2622-2628.	3.0	26
36	Novel Benzofurans with ^{99m} Tc Complexes as Probes for Imaging Cerebral β-Amyloid Plaques. ACS Medicinal Chemistry Letters, 2010, 1, 443-447.	2.8	25

#	Article	IF	CITATIONS
37	Structure–Activity Relationships and in Vivo Evaluation of Quinoxaline Derivatives for PET Imaging of β-Amyloid Plaques. ACS Medicinal Chemistry Letters, 2013, 4, 596-600.	2.8	25
38	Structure–activity relationships of radioiodinated diphenyl derivatives with different conjugated double bonds as ligands for α-synuclein aggregates. RSC Advances, 2016, 6, 44305-44312.	3.6	25
39	Highly Selective Tau-SPECT Imaging Probes for Detection of Neurofibrillary Tangles in Alzheimer's Disease. Scientific Reports, 2016, 6, 34197.	3.3	25
40	Identification and Evaluation of Bisquinoline Scaffold as a New Candidate for \hat{l}_{\pm} -Synuclein-PET Imaging. ACS Chemical Neuroscience, 2020, 11, 4254-4261.	3.5	24
41	Enhancement of Binding Affinity for Amyloid Aggregates by Multivalent Interactions of <a href<="" td=""><td>4.6</td><td>23</td>	4.6	23
42	Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits. Scientific Reports, 2016, 5, 18440.	3.3	21
43	Synthesis and biological evaluation of radioiodinated 2,5-diphenyl-1,3,4-oxadiazoles for detecting \hat{l}^2 -amyloid plaques in the brain. Bioorganic and Medicinal Chemistry, 2009, 17, 6402-6406.	3.0	20
44	Polyoxazoline multivalently conjugated with indocyanine green for sensitive in vivo photoacoustic imaging of tumors. Scientific Reports, 2016, 6, 33798.	3.3	20
45	Synthesis and biological evaluation of an 111 In-labeled exendin-4 derivative as a single-photon emission computed tomography probe for imaging pancreatic \hat{l}^2 -cells. Bioorganic and Medicinal Chemistry, 2017, 25, 5772-5778.	3.0	20
46	Development of 111 In-labeled exendin(9-39) derivatives for single-photon emission computed tomography imaging of insulinoma. Bioorganic and Medicinal Chemistry, 2017, 25, 1406-1412.	3.0	18
47	Novel PET/SPECT Probes for Imaging of Tau in Alzheimer's Disease. Scientific World Journal, The, 2015, 2015, 1-6.	2.1	17
48	Feasibility of Amylin Imaging in Pancreatic Islets with \hat{l}^2 -Amyloid Imaging Probes. Scientific Reports, 2014, 4, 6155.	3.3	17
49	Imaging of Cerebral Amyloid Angiopathy with Bivalent 99mTc-Hydroxamamide Complexes. Scientific Reports, 2016, 6, 25990.	3.3	17
50	Brachytherapy with Intratumoral Injections of Radiometal-Labeled Polymers That Thermoresponsively Self-Aggregate in Tumor Tissues. Journal of Nuclear Medicine, 2017, 58, 1380-1385.	5.0	17
51	Synthesis and biological evaluation of novel radioiodinated benzimidazole derivatives for imaging α-synuclein aggregates. Bioorganic and Medicinal Chemistry, 2017, 25, 6398-6403.	3.0	17
52	Evaluation of 18F-labeled exendin (9-39) derivatives targeting glucagon-like peptide-1 receptor for pancreatic \hat{l}^2 -cell imaging. Bioorganic and Medicinal Chemistry, 2018, 26, 463-469.	3.0	16
53	Enhanced Delivery of Radiolabeled Polyoxazoline into Tumors via Self-Aggregation under Hyperthermic Conditions. Molecular Pharmaceutics, 2018, 15, 3997-4003.	4.6	16
54	Radiotheranostics Using a Novel ²²⁵ Ac-Labeled Radioligand with Improved Pharmacokinetics Targeting Prostate-Specific Membrane Antigen. Journal of Medicinal Chemistry, 2021, 64, 13429-13438.	6.4	16

#	Article	IF	Citations
55	Stabilization Mechanism for a Nonfibrillar Amyloid \hat{l}^2 Oligomer Based on Formation of a Hydrophobic Core Determined by Dissipative Particle Dynamics. ACS Chemical Neuroscience, 2020, 11, 385-394.	3.5	15
56	Core Binding Site of a Thioflavin-T-Derived Imaging Probe on Amyloid \hat{l}^2 Fibrils Predicted by Computational Methods. ACS Chemical Neuroscience, 2018, 9, 957-966.	3.5	14
57	Modulation of the Pharmacokinetics of a Radioligand Targeting Carbonic Anhydrase-IX with Albumin-Binding Moieties. Molecular Pharmaceutics, 2021, 18, 966-975.	4.6	14
58	Development of ^{99m} Tc-Labeled Pyridyl Benzofuran Derivatives To Detect Pancreatic Amylin in Islet Amyloid Model Mice. Bioconjugate Chemistry, 2016, 27, 1532-1539.	3.6	12
59	First-in-Human Evaluation of Positron Emission Tomography/Computed Tomography With [18F]FB(ePEG12)12-Exendin-4: A Phase 1 Clinical Study Targeting GLP-1 Receptor Expression Cells in Pancreas. Frontiers in Endocrinology, 2021, 12, 717101.	3.5	12
60	Synthesis and biological evaluation of novel technetium-99m-labeled phenylquinoxaline derivatives as single photon emission computed tomography imaging probes targeting \hat{l}^2 -amyloid plaques in Alzheimer's disease. RSC Advances, 2017, 7, 20582-20590.	3.6	11
61	Development of a novel radiotheranostic platform with a DOTA-based trifunctional chelating agent. Chemical Communications, 2021, 57, 6432-6435.	4.1	11
62	Structure–Activity Relationships of Radioiodinated Benzoimidazopyridine Derivatives for Detection of Tau Pathology. ACS Medicinal Chemistry Letters, 2018, 9, 478-483.	2.8	10
63	Synthesis and biological evaluation of F-18 labeled tetrahydroisoquinoline derivatives targeting orexin 1 receptor. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1620-1623.	2.2	10
64	Development of the ^{99m} Tc-Hydroxamamide Complex as a Probe Targeting Carbonic Anhydrase IX. Molecular Pharmaceutics, 2019, 16, 1489-1497.	4.6	10
65	Chalcone Analogue as New Candidate for Selective Detection of \hat{l}_{\pm} -Synuclein Pathology. ACS Chemical Neuroscience, 2022, 13, 16-26.	3.5	10
66	18F-Labeled 2-phenylquinoxaline derivatives as potential positron emission tomography probes for in \hat{A} vivo imaging of \hat{I}^2 -amyloid plaques. European Journal of Medicinal Chemistry, 2012, 57, 51-58.	5.5	9
67	¹⁸ F-Labeled Pyrido[3,4- <i>d</i>)] pyrimidine as an Effective Probe for Imaging of L858R Mutant Epidermal Growth Factor Receptor. ACS Medicinal Chemistry Letters, 2017, 8, 418-422.	2.8	9
68	Novel fluorescence probes based on the chalcone scaffold for in vitro staining of \hat{l}^2 -amyloid plaques. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3242-3246.	2.2	9
69	18F-labeled benzimidazopyridine derivatives for PET imaging of tau pathology in Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2019, 27, 3587-3594.	3.0	9
70	Synthesis and evaluation of indium-111-labeled imidazothiadiazole sulfonamide derivative for single photon emission computed tomography imaging targeting carbonic anhydrase-IX. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127255.	2.2	9
71	Novel radioiodinated 1,3,4-oxadiazole derivatives with improved in vivo properties for SPECT imaging of \hat{I}^2 -amyloid plaques. MedChemComm, 2014, 5, 82-85.	3.4	8
72	Conversion of iodine to fluorine-18 based on iodinated chalcone and evaluation for \hat{l}^2 -amyloid PET imaging. Bioorganic and Medicinal Chemistry, 2018, 26, 3352-3358.	3.0	8

#	Article	IF	Citations
73	PET probe detecting non-small cell lung cancer susceptible to epidermal growth factor receptor tyrosine kinase inhibitor therapy. Bioorganic and Medicinal Chemistry, 2018, 26, 1609-1613.	3.0	7
74	Synthesis and evaluation of novel two-photon fluorescence probes for in vivo imaging of amylin aggregates in the pancreas. Dyes and Pigments, 2019, 170, 107615.	3.7	7
75	Development of an $\langle \sup 111 \langle \sup $ In-Labeled Glucagon-Like Peptide-1 Receptor-Targeting Exendin-4 Derivative that Exhibits Reduced Renal Uptake. Molecular Pharmaceutics, 2022, 19, 1019-1027.	4.6	7
76	Structure–Activity Relationships of Radioiodinated 6,5,6-Tricyclic Compounds for the Development of Tau Imaging Probes. ACS Medicinal Chemistry Letters, 2020, 11, 120-126.	2.8	6
77	Development of Radioiodinated Benzofuran Derivatives for <i>in Vivo</i> i> Imaging of Prion Deposits in the Brain. ACS Infectious Diseases, 2019, 5, 2003-2013.	3.8	5
78	Synthesis and characterization of a novel ¹⁸ F-labeled 2,5-diarylnicotinamide derivative targeting orexin 2 receptor. MedChemComm, 2019, 10, 2126-2130.	3.4	5
79	Synthesis and evaluation of novel technetium-99m-hydroxamamide complex based on imidazothiadiazole sulfonamide targeting carbonic anhydrase-IX for tumor imaging. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127596.	2.2	5
80	Synthesis and biological evaluation of radioiodinated 3-phenylcoumarin derivatives targeting myelin in multiple sclerosis. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127562.	2.2	5
81	Synthesis and evaluation of 68Ga-labeled imidazothiadiazole sulfonamide derivatives for PET imaging of carbonic anhydrase-IX. Nuclear Medicine and Biology, 2021, 93, 46-53.	0.6	4
82	PET imaging and pharmacological therapy targeting carbonic anhydrase-IX high-expressing tumors using US2 platform based on bivalent ureidosulfonamide. PLoS ONE, 2020, 15, e0243327.	2.5	4
83	Syntheses of Two Potential Ligands for Tcâ€99m Labeling as Diagnosis Agents of Alzheimer's Disease. Chinese Journal of Chemistry, 2003, 21, 824-832.	4.9	3
84	Characterization of Novel ¹⁸ F-Labeled Phenoxymethylpyridine Derivatives as Amylin Imaging Probes. Molecular Pharmaceutics, 2018, 15, 5574-5584.	4.6	3
85	Novel radiogallium-labeled pyridyl benzofuran derivative for detection of amylin aggregates in pancreas. Nuclear Medicine and Biology, 2020, 90-91, 93-97.	0.6	3
86	Development of Novel PET Imaging Probes for Detection of Amylin Aggregates in the Pancreas. Molecular Pharmaceutics, 2020, 17, 1293-1299.	4.6	3
87	Structure–Activity and Brain Kinetics Relationships of 18F-Labeled Benzimidazopyridine Derivatives as Tau PET Tracers. ACS Medicinal Chemistry Letters, 2021, 12, 262-266.	2.8	3
88	Characterization and Optimization of Benzimidazopyrimidine and Pyridoimidazopyridine Derivatives as Tau-SPECT Probes. ACS Medicinal Chemistry Letters, 2021, 12, 805-811.	2.8	3
89	Synthesis and evaluation of a [18F]formyl–Met–Leu–Phe derivative: A positron emission tomography imaging probe for bacterial infections. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2949-2952.	2.2	2
90	Feasibility studies of radioiodinated pyridyl benzofuran derivatives as potential SPECT imaging agents for prion deposits in the brain. Nuclear Medicine and Biology, 2020, 90-91, 41-48.	0.6	2

#	Article	IF	CITATIONS
91	Synthesis and biological evaluation of novel 18F-labeled phenylbenzofuran-2-carboxamide derivative for detection of orexin 1 receptor in the brain. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128098.	2.2	2
92	Characterization of Radioiodinated Diaryl Oxadiazole Derivatives as SPECT Probes for Detection of Myelin in Multiple Sclerosis. ACS Chemical Neuroscience, 2022, 13, 363-369.	3.5	2
93	Feasibility of using a 99mTc-hydroxamamide complex containing an albumin binder moiety for in vivo albumin labeling-based tumor imaging. Bioorganic and Medicinal Chemistry Letters, 2021, 53, 128417.	2.2	1
94	Synthesis and evaluation of novel radioiodinated phenylbenzofuranone derivatives as α-synuclein imaging probes. Bioorganic and Medicinal Chemistry Letters, 2022, 64, 128679.	2.2	1
95	Synthesis and Evaluation of Novel $<$ sup $>$ 111 $<$ /sup $>$ In-Labeled Picolinic Acid-Based Radioligands Containing an Albumin Binder for Development of a Radiotheranostic Platform. Molecular Pharmaceutics, 2022, 19, 2725-2736.	4.6	1
96	Structure–Activity Relationships and Pharmacokinetics of ¹¹¹ In-Labeled Glucagon-like Peptide-1 Receptor-Targeting Exendin-4 Derivatives Conjugated with Albumin Binder Moieties. Molecular Pharmaceutics, 2022, 19, 2832-2839.	4.6	1
97	Development of a hydroxamamide-based bifunctional chelating agent to prepare technetium-99m-labeled bivalent ligand probes. Scientific Reports, 2021, 11, 18714.	3.3	0