Feng Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3590685/publications.pdf

Version: 2024-02-01

151	2,675	27	45
papers	citations	h-index	g-index
151	151	151	1292
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	List-Wise Rank Learning for Stereoscopic Image Retargeting Quality Assessment. IEEE Transactions on Multimedia, 2022, 24, 1595-1608.	7.2	1
2	Combining Retargeting Quality and Depth Perception Measures for Quality Evaluation of Retargeted Stereopairs. IEEE Transactions on Multimedia, 2022, 24, 2422-2434.	7.2	4
3	A Blind Full-Resolution Quality Evaluation Method for Pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	12
4	LGGD+: Image Retargeting Quality Assessment by Measuring Local and Global Geometric Distortions. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 3422-3437.	8.3	11
5	SARF: A Simple, Adjustable, and Robust Fusion Method. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	5
6	StereoARS: Quality Evaluation for Stereoscopic Image Retargeting With Binocular Inconsistency Detection. IEEE Transactions on Broadcasting, 2022, 68, 43-57.	3.2	8
7	Cross-Modality Fusion and Progressive Integration Network for Saliency Prediction on Stereoscopic 3D Images. IEEE Transactions on Multimedia, 2022, 24, 2435-2448.	7.2	7
8	Monocular and Binocular Interactions Oriented Deformable Convolutional Networks for Blind Quality Assessment of Stereoscopic Omnidirectional Images. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 3407-3421.	8.3	9
9	M2OVQA: Multi-space signal characterization and multi-channel information aggregation for quality assessment of compressed omnidirectional videos. Journal of Visual Communication and Image Representation, 2022, 82, 103419.	2.8	1
10	Deep network based stereoscopic image quality assessment via binocular summing and differencing. Journal of Visual Communication and Image Representation, 2022, 82, 103420.	2.8	4
11	PSTAF-GAN: Progressive Spatio-Temporal Attention Fusion Method Based on Generative Adversarial Network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	8
12	Single Image Super-Resolution Quality Assessment: A Real-World Dataset, Subjective Studies, and an Objective Metric. IEEE Transactions on Image Processing, 2022, 31, 2279-2294.	9.8	49
13	Underwater Image Enhancement Quality Evaluation: Benchmark Dataset and Objective Metric. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 5959-5974.	8.3	72
14	Vision Transformer for Pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	28
15	Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 19440-19455.	8.0	40
16	CGMDRNet: Cross-Guided Modality Difference Reduction Network for RGB-T Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 6308-6323.	8.3	29
17	VSOIQE: A Novel Viewport-Based Stitched 360° Omnidirectional Image Quality Evaluator. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 6557-6572.	8.3	10
18	Toward Top-Down Just Noticeable Difference Estimation of Natural Images. IEEE Transactions on Image Processing, 2022, 31, 3697-3712.	9.8	15

#	Article	IF	CITATIONS
19	A Blind Full Resolution Assessment Method for Pansharpened Images Based on Multistream Collaborative Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	4
20	Spatio–Temporal–Spectral Collaborative Learning for Spatio–Temporal Fusion with Land Cover Changes. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	11
21	Subjective and Objective Quality Assessment for Stereoscopic Image Retargeting. IEEE Transactions on Multimedia, 2021, 23, 2100-2113.	7.2	10
22	Measuring Coarse-to-Fine Texture and Geometric Distortions for Quality Assessment of DIBR-Synthesized Images. IEEE Transactions on Multimedia, 2021, 23, 1173-1186.	7.2	7
23	Exploiting Local Degradation Characteristics and Global Statistical Properties for Blind Quality Assessment of Tone-Mapped HDR Images. IEEE Transactions on Multimedia, 2021, 23, 692-705.	7.2	18
24	A Large-Scale Benchmark Data Set for Evaluating Pansharpening Performance: Overview and Implementation. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 18-52.	9.6	92
25	Blind quality assessment of omnidirectional videos using spatio-temporal convolutional neural networks. Optik, 2021, 226, 165887.	2.9	7
26	Roundness-Preserving Warping for Aesthetic Enhancement-Based Stereoscopic Image Editing. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 1463-1477.	8.3	11
27	Transformation-Aware Similarity Measurement for Image Retargeting Quality Assessment via Bidirectional Rewarping. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 3053-3067.	9.3	17
28	Two-Branch Deep Neural Network for Underwater Image Enhancement in HSV Color Space. IEEE Signal Processing Letters, 2021, 28, 2152-2156.	3.6	33
29	Quality assessment for color correction-based stitched images via bi-directional matching. Journal of Visual Communication and Image Representation, 2021, 75, 103051.	2.8	9
30	Blind 360-degree image quality assessment via saliency-guided convolution neural network. Optik, 2021, 240, 166858.	2.9	4
31	No-Reference Image Contrast Evaluation by Generating Bidirectional Pseudoreferences. IEEE Transactions on Industrial Informatics, 2021, 17, 6062-6072.	11.3	14
32	Stitched image quality assessment based on local measurement errors and global statistical properties. Journal of Visual Communication and Image Representation, 2021, 81, 103324.	2.8	7
33	Depth Trajectory-Aware Stereoscopic Video Retargeting. IEEE Access, 2021, 9, 30335-30346.	4.2	2
34	MSTGAR: Multioperator-Based Stereoscopic Thumbnail Generation With Arbitrary Resolution. IEEE Transactions on Multimedia, 2020, 22, 1208-1219.	7.2	8
35	A large-scale remote sensing database for subjective and objective quality assessment of pansharpened images. Journal of Visual Communication and Image Representation, 2020, 73, 102947.	2.8	5
36	TSPR: Deep network-based blind image quality assessment using two-side pseudo reference images. , 2020, 106, 102849.		10

#	Article	IF	Citations
37	A Full-Reference Stereoscopic Image Quality Measurement Via Hierarchical Deep Feature Degradation Fusion. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 9784-9796.	4.7	29
38	Blind quality assessment for multiply distorted stereoscopic images towards IoT-based 3D capture systems. Journal of Visual Communication and Image Representation, 2020, 71, 102868.	2.8	1
39	A SAR-to-Optical Image Translation Method Based on Conditional Generation Adversarial Network (cGAN). IEEE Access, 2020, 8, 60338-60343.	4.2	38
40	Blind Image Quality Measurement by Exploiting High-Order Statistics With Deep Dictionary Encoding Network. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 7398-7410.	4.7	32
41	Building Stereoscopic Zoomer via Global and Local Warping Optimization. IEEE Transactions on Computational Imaging, 2020, 6, 1622-1635.	4.4	1
42	Seam Manipulator: Leveraging Pixel Fusion for Depth-Adjustable Stereoscopic Image Retargeting. IEEE Access, 2019, 7, 25239-25252.	4.2	4
43	A Risk-Aware Pairwise Rank Learning Approach for Visual Discomfort Prediction of Stereoscopic 3D. IEEE Signal Processing Letters, 2019, 26, 1588-1592.	3.6	8
44	Sparse Representation for No-Reference Quality Assessment of Satellite Stereo Images. IEEE Access, 2019, 7, 106295-106306.	4.2	6
45	Simultaneous object size and depth adjustment for stereoscopic 3D images. Information Sciences, 2019, 481, 280-291.	6.9	3
46	Discriminative dictionary learning for retinal vessel segmentation using fusion of multiple features. Signal, Image and Video Processing, 2019, 13, 1529-1537.	2.7	16
47	No-Reference Quality Assessment for Pansharpened Images via Opinion-Unaware Learning. IEEE Access, 2019, 7, 40388-40401.	4.2	14
48	User Controllable Content Retargeting and Depth Adaptation for Stereoscopic Display. IEEE Access, 2019, 7, 22541-22553.	4.2	2
49	A Study of Perceptual Quality Assessment for Stereoscopic Image Retargeting. , 2019, , .		2
50	Authentically Distorted Image Quality Assessment by Learning From Empirical Score Distributions. IEEE Signal Processing Letters, 2019, 26, 1867-1871.	3.6	8
51	Unified No-Reference Quality Assessment of Singly and Multiply Distorted Stereoscopic Images. IEEE Transactions on Image Processing, 2019, 28, 1866-1881.	9.8	127
52	Quality Assessment of 3D Synthesized Images via Measuring Local Feature Similarity and Global Sharpness. IEEE Access, 2019, 7, 10242-10253.	4.2	10
53	BLIQUE-TMI: Blind Quality Evaluator for Tone-Mapped Images Based on Local and Global Feature Analyses. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29, 323-335.	8.3	52
54	Optimizing Multistage Discriminative Dictionaries for Blind Image Quality Assessment. IEEE Transactions on Multimedia, 2018, 20, 2035-2048.	7.2	179

#	Article	IF	Citations
55	Multistage Pooling for Blind Quality Prediction of Asymmetric Multiply-Distorted Stereoscopic Images. IEEE Transactions on Multimedia, 2018, 20, 2605-2619.	7.2	7
56	No-Reference View Synthesis Quality Prediction for 3-D Videos Based on Color–Depth Interactions. IEEE Transactions on Multimedia, 2018, 20, 659-674.	7.2	24
57	Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure. IEEE Access, 2018, 6, 806-817.	4.2	30
58	Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder. Pattern Recognition, 2018, 76, 242-255.	8.1	27
59	Quality Assessment of Retargeted Images Using Hand-Crafted and Deep-Learned Features. IEEE Access, 2018, 6, 12008-12018.	4.2	16
60	Toward Domain Transfer for No-Reference Quality Prediction of Asymmetrically Distorted Stereoscopic Images. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 573-585.	8.3	22
61	Learning Sparse Representation for Objective Image Retargeting Quality Assessment. IEEE Transactions on Cybernetics, 2018, 48, 1276-1289.	9.5	32
62	Toward a Blind Quality Predictor for Screen Content Images. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1521-1530.	9.3	25
63	Local and global sparse representation for no-reference quality assessment of stereoscopic images. Information Sciences, 2018, 422, 110-121.	6.9	16
64	Perceptual stereoscopic image quality assessment method with tensor decomposition and manifold learning. IET Image Processing, 2018, 12, 810-818.	2.5	14
65	Blood vessel segmentation of fundus images via cross-modality dictionary learning. Applied Optics, 2018, 57, 7287.	1.8	5
66	Leveraging visual attention and neural activity for stereoscopic 3D visual comfort assessment. Multimedia Tools and Applications, 2017, 76, 9405-9425.	3.9	12
67	Learning Sparse Representation for No-Reference Quality Assessment of Multiply Distorted Stereoscopic Images. IEEE Transactions on Multimedia, 2017, 19, 1821-1836.	7.2	22
68	Visual comfort assessment for stereoscopic images based on sparse coding with multi-scale dictionaries. Neurocomputing, 2017, 252, 77-86.	5.9	13
69	QoE-Guided Warping for Stereoscopic Image Retargeting. IEEE Transactions on Image Processing, 2017, 26, 4790-4805.	9.8	37
70	Toward Simultaneous Visual Comfort and Depth Sensation Optimization for Stereoscopic 3-D Experience. IEEE Transactions on Cybernetics, 2017, 47, 4521-4533.	9.5	20
71	A new tone-mapped image quality assessment approach for high dynamic range imaging system. , 2017, , .		4
72	MSFE: Blind image quality assessment based on multi-stage feature encoding. , 2017, , .		1

#	Article	IF	CITATIONS
73	Modeling the Perceptual Quality of Stereoscopic Images in the Primary Visual Cortex. IEEE Access, 2017, 5, 15706-15716.	4.2	18
74	Optimizing multiview video plus depth retargeting technique for stereoscopic 3D displays. Optics Express, 2017, 25, 12478.	3.4	8
75	StereoEditor: controllable stereoscopic display by content retargeting. Optics Express, 2017, 25, 33202.	3.4	4
76	Video quality assessment using motion-compensated temporal filtering and manifold feature similarity. PLoS ONE, 2017, 12, e0175798.	2.5	1
77	Binocular visual characteristics-based stereoscopic image quality assessment metric for 3D video system. International Journal of Information and Communication Technology, 2016, 9, 243.	0.1	1
78	Novel visibility threshold model for asymmetrically distorted stereoscopic images. , 2016, , .		3
79	Video quality assessment method motivated by human visual perception. Journal of Electronic Imaging, 2016, 25, 061613.	0.9	2
80	Simulating receptive fields of human visual cortex for 3D image quality prediction. Applied Optics, 2016, 55, 5488.	2.1	4
81	Learning Blind Quality Evaluator for Stereoscopic Images Using Joint Sparse Representation. IEEE Transactions on Multimedia, 2016, 18, 2104-2114.	7.2	42
82	Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals. Optics Express, 2016, 24, 11640.	3.4	10
83	Stereoscopic Visual Attention Guided Seam Carving for Stereoscopic Image Retargeting. Journal of Display Technology, 2016, 12, 22-30.	1.2	25
84	An Energy-Constrained Video Retargeting Approach for Color-Plus-Depth 3D Video. Journal of Display Technology, 2016, 12, 491-499.	1.2	2
85	Models of Monocular and Binocular Visual Perception in Quality Assessment of Stereoscopic Images. IEEE Transactions on Computational Imaging, 2016, 2, 123-135.	4.4	31
86	On Predicting Visual Comfort of Stereoscopic Images: A Learning to Rank Based Approach. IEEE Signal Processing Letters, 2016, 23, 302-306.	3.6	32
87	Low-Complexity Depth Coding by Depth Sensitivity Aware Rate-Distortion Optimization. IEEE Transactions on Broadcasting, 2016, 62, 94-102.	3.2	11
88	Stereoscopic image quality assessment using disparity-compensated view filtering. Journal of Electronic Imaging, 2016, 25, 023001.	0.9	2
89	Toward a Blind Deep Quality Evaluator for Stereoscopic Images Based on Monocular and Binocular Interactions. IEEE Transactions on Image Processing, 2016, 25, 2059-2074.	9.8	70
90	Binocular perception based reduced-reference stereo video quality assessment method. Journal of Visual Communication and Image Representation, 2016, 38, 246-255.	2.8	19

#	Article	IF	CITATIONS
91	Inter-view local texture analysis based stereo image reversible data hiding., 2016, 48, 116-129.		11
92	Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images. IEEE Transactions on Cybernetics, 2016, 46, 730-743.	9.5	38
93	Binocular combination and fractional differential based 3D image quality assessment. , 2015, , .		1
94	New stereo visual comfort assessment method based on scene mode classification., 2015,,.		0
95	Supervised dictionary learning for blind image quality assessment. , 2015, , .		1
96	Full-Reference Quality Assessment of Stereoscopic Images by Learning Binocular Receptive Field Properties. IEEE Transactions on Image Processing, 2015, 24, 2971-2983.	9.8	107
97	Visual discomfort relaxation for stereoscopic 3D images by adjusting zero-disparity plane for projection. Displays, 2015, 39, 125-132.	3.7	22
98	Difference of Gaussian statistical features based blind image quality assessment: A deep learning approach. , 2015, , .		29
99	Monocular–binocular feature fidelity induced index for stereoscopic image quality assessment. Applied Optics, 2015, 54, 9671.	2.1	6
100	Stereo Image Reversible Watermarking for Authentication. 3D Research, 2015, 6, 1.	1.8	0
101	Blind Image Quality Assessment for Stereoscopic Images Using Binocular Guided Quality Lookup and Visual Codebook. IEEE Transactions on Broadcasting, 2015, 61, 154-165.	3.2	40
102	Using Binocular Feature Combination for Blind Quality Assessment of Stereoscopic Images. IEEE Signal Processing Letters, 2015, 22, 1548-1551.	3.6	37
103	A depth perception and visual comfort guided computational model for stereoscopic 3D visual saliency. Signal Processing: Image Communication, 2015, 38, 57-69.	3.2	38
104	Supervised dictionary learning for blind image quality assessment using quality-constraint sparse coding. Journal of Visual Communication and Image Representation, 2015, 33, 123-133.	2.8	28
105	Three-dimensional visual comfort assessment via preference learning. Journal of Electronic Imaging, 2015, 24, 043002.	0.9	45
106	Joint structure–texture sparse coding for quality prediction of stereoscopic images. Electronics Letters, 2015, 51, 1994-1995.	1.0	14
107	New fragile watermarking method for stereo image authentication with localization and recovery. AEU - International Journal of Electronics and Communications, 2015, 69, 361-370.	2.9	43
108	Binocular vision based objective quality assessment method for stereoscopic images. Multimedia Tools and Applications, 2015, 74, 8197-8218.	3.9	7

#	Article	IF	Citations
109	A Novel Macroblock Level Rate Control Method for Stereo Video Coding. Scientific World Journal, The, 2014, 2014, 1-11.	2.1	3
110	A Simple Quality Assessment Index for Stereoscopic Images Based on 3D Gradient Magnitude. Scientific World Journal, The, 2014, 2014, 1-11.	2.1	6
111	Disparity based stereo image reversible data hiding. , 2014, , .		1
112	Stereoscopic image tamper detection and self-recovery using hierarchical detection and stereoscopic matching. Journal of Electronic Imaging, 2014, 23, 023022.	0.9	4
113	Binocular energy response based quality assessment of stereoscopic images. , 2014, 29, 45-53.		17
114	Stereo image watermarking scheme for authentication with self-recovery capability using inter-view reference sharing. Multimedia Tools and Applications, 2014, 73, 1077-1102.	3.9	11
115	Depth Map Coding for View Synthesis Based on Distortion Analyses. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4, 106-117.	3.6	26
116	PMFS: A Perceptual Modulated Feature Similarity Metric for Stereoscopic Image Quality Assessment. IEEE Signal Processing Letters, 2014, 21, 1003-1006.	3.6	22
117	Supporting binocular visual quality prediction using machine learning. , 2014, , .		0
118	No reference image quality assessment based on distortion classification. , 2014, , .		0
119	Joint just noticeable distortion based stereo image watermarking method with self-recovery. WIT Transactions on Information and Communication Technologies, 2014, , .	0.0	2
120	An objective visual comfort prediction metric of stereoscopic images based on stereoscopic saliency model. , 2014, , .		0
121	Fast intra mode decision algorithm based on SATD adaptive selection and MPM. WIT Transactions on Information and Communication Technologies, 2014, , .	0.0	0
122	A new objective stereoscopic image assessment model based on stereoscopic perception. Journal of Electronics, 2013, 30, 469-475.	0.2	0
123	A micro-image fusion algorithm based on region growing. Journal of Electronics, 2013, 30, 91-96.	0.2	1
124	Perceptual Full-Reference Quality Assessment of Stereoscopic Images by Considering Binocular Visual Characteristics. IEEE Transactions on Image Processing, 2013, 22, 1940-1953.	9.8	176
125	New Stereoscopic Image Quality Assessment Metric Based on Three Dimensional-discrete Cosine Transform for 3d Media. Journal of Applied Sciences, 2013, 13, 3061-3066.	0.3	0
126	A multi-view video plus depth coding method based on view warping and bit allocation. , 2012, , .		0

#	Article	IF	Citations
127	New fast depth image-based rendering method for 3DTV., 2012,,.		O
128	A Novel No-Reference Stereoscopic Image Quality Assessment Method. , 2012, , .		4
129	Stereoscopic images quality assessment by jointly evaluating image quality and depth perception. , 2012, , .		4
130	A novel stereoscopic video coding method based on view warping. , 2012, , .		0
131	Joint video/depth bit allocation for 3D video coding based on distortion of synthesized view. , 2012, , .		7
132	Region-based error concealment of right-view frames for stereoscopic video transmission. Computers and Electrical Engineering, 2012, 38, 217-230.	4.8	4
133	Asymmetric Coding of Multi-View Video Plus Depth Based 3-D Video for View Rendering. IEEE Transactions on Multimedia, 2012, 14, 157-167.	7.2	85
134	3DTV-Oriented Multiview Video Coding Based on Stereoscopic Visual ROI. , 2011, , .		0
135	Subjective quality analyses of stereoscopic images in 3DTV system. , 2011, , .		44
136	A novel rate control technique for asymmetric-quality stereoscopic video. IEEE Transactions on Consumer Electronics, 2011, 57, 1823-1829.	3.6	6
137	Relationship Modulation Based Blind Stereoscopic Image Watermarking Algorithm for 3D Media. , 2011,		1
138	JND-based asymmetric coding of stereoscopic video for mobile 3DTV applications. , 2011, , .		6
139	A new four-component gradient-based structural similarity metric using adaptive weights. , 2011, , .		3
140	Network-driven low complexity coding for wireless multi-view video system. Journal of Real-Time Image Processing, 2010, 5, 33-43.	3.5	1
141	A robust color correction method for stereoscopic video coding. , 2010, , .		O
142	Color Correction for Multi-view Video Based on Color Variation Curve. , 2010, , .		1
143	Stereoscopic video coding with asymmetric luminance and chrominance qualities. IEEE Transactions on Consumer Electronics, 2010, 56, 2460-2468.	3.6	26
144	Asymmetric multi-view video coding based on chrominance reconstruction. , 2010, , .		3

#	Article	IF	CITATIONS
145	Dominant Color Tracking Based Color Correction for Multi-View Video Using Kalman Filter. , 2009, , .		0
146	Fast Disparity Refinement Algorithm for Client-Oriented Multi-view Video System., 2009,,.		0
147	Color correction and geometric calibration for multi-view images with feature correspondence. Optoelectronics Letters, 2009, 5, 232-235.	0.8	2
148	Coding-oriented multi-view video color correction. Journal of Electronics, 2008, 25, 721-727.	0.2	0
149	Fast Macroblock Selection Algorithm for Multiview Video Coding Based on Inter-view Global Disparity. , 2008, , .		10
150	A New Image Correction Method for Multiview Video System. , 2006, , .		6
151	Fast Adaptive Block Matching for Ray-Space Coding in FTV System. , 0, , .		0