
## Vincent Mazel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3590532/publications.pdf Version: 2024-02-01



VINCENT MAZEL

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Lamination of Pharmaceutical Tablets: Classification and Influence of Process Parameters. Journal of<br>Pharmaceutical Sciences, 2022, 111, 1480-1485.                                                                                                            | 3.3 | 12        |
| 2  | Characterization of the viscoelasticity of pharmaceutical tablets using impulse excitation technique.<br>International Journal of Pharmaceutics, 2022, 613, 121410.                                                                                               | 5.2 | 4         |
| 3  | Beyond Brittle/Ductile Classification: Applying Proper Constitutive Mechanical Metrics to Understand the Compression Characteristics of Pharmaceutical Materials. Journal of Pharmaceutical Sciences, 2022, 111, 1984-1991.                                       | 3.3 | 10        |
| 4  | Breaking patterns of press-coated tablets during the diametral compression test: Influence of the product, geometry and process parameters. International Journal of Pharmaceutics, 2022, 612, 121371.                                                            | 5.2 | 5         |
| 5  | Use of jump-tests for the characterization of the viscoplastic behavior of pharmaceutical powders during compaction. Powder Technology, 2022, 404, 117406.                                                                                                        | 4.2 | 3         |
| 6  | Impact of unloading kinematics on the occurrence of capping during the production of pharmaceutical tablets. International Journal of Pharmaceutics, 2022, 621, 121818.                                                                                           | 5.2 | 4         |
| 7  | On the complexity of predicting tablet capping. International Journal of Pharmaceutics, 2022, 623, 121949.                                                                                                                                                        | 5.2 | 9         |
| 8  | Influence of the punch shape on the core and shell structure of press-coated tablets. International<br>Journal of Pharmaceutics, 2022, 623, 121930.                                                                                                               | 5.2 | 0         |
| 9  | Effect of the compaction parameters on the final structure and properties of a press-coated tablet<br>(Tab-in-Tab): Experimental and numerical study of the influence of core and shell dimensions.<br>International Journal of Pharmaceutics, 2021, 596, 120260. | 5.2 | 5         |
| 10 | Dynamic fracture analysis in Brazilian test: application to pharmaceutical tablets. International<br>Journal of Fracture, 2021, 229, 113.                                                                                                                         | 2.2 | 5         |
| 11 | Use of impulse excitation technique for the characterization of the elastic anisotropy of pharmaceutical tablets. International Journal of Pharmaceutics, 2021, 605, 120797.                                                                                      | 5.2 | 8         |
| 12 | Role of Precompression in the Mitigation of Capping: A Case Study. Journal of Pharmaceutical Sciences, 2020, 109, 3210-3213.                                                                                                                                      | 3.3 | 6         |
| 13 | Characterization and modeling of the viscoelasticity of pharmaceutical tablets. International Journal of Pharmaceutics, 2020, 587, 119695.                                                                                                                        | 5.2 | 8         |
| 14 | Applicability of impulse excitation technique as a tool to characterize the elastic properties of pharmaceutical tablets: Experimental and numerical study. International Journal of Pharmaceutics, 2020, 590, 119892.                                            | 5.2 | 7         |
| 15 | Quantification of tablet sensitivity to a stress concentration: Generalization of Hiestand's approach and link with the microstructure. Powder Technology, 2020, 369, 176-183.                                                                                    | 4.2 | 9         |
| 16 | Influence of the Punch Speed on the Die Wall/Powder Kinematic Friction During Tableting. Journal of<br>Pharmaceutical Sciences, 2019, 108, 3359-3365.                                                                                                             | 3.3 | 13        |
| 17 | Influence of the unloading conditions on capping and lamination: Study on a compaction simulator.<br>International Journal of Pharmaceutics, 2019, 567, 118468.                                                                                                   | 5.2 | 10        |
| 18 | Effect of friction between powder and tooling on the die-wall pressure evolution during tableting:<br>Experimental and numerical results for flat and concave punches. International Journal of<br>Pharmaceutics, 2019, 554, 116-124.                             | 5.2 | 5         |

VINCENT MAZEL

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lamination of biconvex tablets: Numerical and experimental study. International Journal of Pharmaceutics, 2018, 542, 66-71.                                                                                                   | 5.2 | 21        |
| 20 | Development and pre-clinical evaluation in the swine model of a mucosal vaccine tablet for human influenza viruses: A proof-of-concept study. International Journal of Pharmaceutics, 2018, 538, 87-96.                       | 5.2 | 5         |
| 21 | Sensitivity of elastic parameters during the numerical simulation of pharmaceutical die compaction process with Drucker-Prager/Cap model. Powder Technology, 2018, 332, 150-157.                                              | 4.2 | 12        |
| 22 | Effect of the Curvature of the Punches on the Shape of the Interface and the Delamination Tendency of Bilayer Tablets. Journal of Pharmaceutical Sciences, 2017, 106, 1331-1338.                                              | 3.3 | 4         |
| 23 | Breaking pharmaceutical tablets with a hole: Reevaluation of the stress concentration factor and influence of the hole size. Powder Technology, 2017, 317, 126-132.                                                           | 4.2 | 11        |
| 24 | Shear strength of pharmaceutical tablets: Theoretical considerations, evaluation and relation with the capping tendency of biconvex tablets. International Journal of Pharmaceutics, 2017, 532, 421-426.                      | 5.2 | 6         |
| 25 | Comparative study between Drucker-Prager/Cap and modified Cam-Clay models for the numerical simulation of die compaction of pharmaceutical powders. Powder Technology, 2017, 320, 530-539.                                    | 4.2 | 21        |
| 26 | Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets.<br>International Journal of Pharmaceutics, 2016, 513, 709-716.                                                          | 5.2 | 12        |
| 27 | Reevaluation of the diametral compression test for tablets using the flattened disc geometry.<br>International Journal of Pharmaceutics, 2016, 513, 669-677.                                                                  | 5.2 | 31        |
| 28 | Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation. Journal of Pharmaceutical Sciences, 2015, 104, 4339-4344.                             | 3.3 | 22        |
| 29 | Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method. International Journal of Pharmaceutics, 2015, 493, 121-128.                                            | 5.2 | 36        |
| 30 | Lamination of pharmaceutical tablets due to air entrapment: Direct visualization and influence of the compact thickness. International Journal of Pharmaceutics, 2015, 478, 702-704.                                          | 5.2 | 33        |
| 31 | Study of the Lactobacillus rhamnosus Lcr35® properties after compression and proposition of a model to predict tablet stability. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 787-794.                   | 4.3 | 27        |
| 32 | Development of a new test for the easy characterization of the adhesion at the interface of bilayer<br>tablets: Proof-of-concept study by experimental design. International Journal of Pharmaceutics, 2014,<br>477, 476-484. | 5.2 | 13        |
| 33 | Study of the Validity of the Three-Point Bending Test for Pharmaceutical Round Tablets Using Finite<br>Element Method Modeling. Journal of Pharmaceutical Sciences, 2014, 103, 1305-1308.                                     | 3.3 | 8         |
| 34 | Comparison of different failure tests for pharmaceutical tablets: Applicability of the Drucker–Prager<br>failure criterion. International Journal of Pharmaceutics, 2014, 470, 63-69.                                         | 5.2 | 20        |
| 35 | Image Analysis Quantification of Sticking and Picking Events of Pharmaceutical Powders Compressed on a Rotary Tablet Press Simulator. Pharmaceutical Research, 2013, 30, 2303-2314.                                           | 3.5 | 15        |
| 36 | FEM simulation of the die compaction of pharmaceutical products: Influence of visco-elastic<br>phenomena and comparison with experiments. International Journal of Pharmaceutics, 2013, 453,<br>389-394.                      | 5.2 | 42        |

VINCENT MAZEL

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the Links Between Elastic Constants and Effective Elastic Behavior of Pharmaceutical Compacts:<br>Importance of Poisson's Ratio and Use of Bulk Modulus. Journal of Pharmaceutical Sciences, 2013, 102,<br>4009-4014.                                                       | 3.3 | 31        |
| 38 | Role of the elasticity of pharmaceutical materials on the interfacial mechanical strength of bilayer tablets. International Journal of Pharmaceutics, 2013, 457, 260-267.                                                                                                      | 5.2 | 27        |
| 39 | The surface layer of pharmaceutical compacts: The role of the punch surface and its impact on the mechanical properties of the compacts. International Journal of Pharmaceutics, 2013, 442, 42-48.                                                                             | 5.2 | 13        |
| 40 | Mechanistic Approach to Stability Studies as a Tool for the Optimization and Development of New<br>Products Based on L. rhamnosus Lcr35® in Compliance with Current Regulations. PLoS ONE, 2013, 8,<br>e79041.                                                                 | 2.5 | 12        |
| 41 | Prediction of the compressibility of complex mixtures of pharmaceutical powders. International<br>Journal of Pharmaceutics, 2012, 436, 862-868.                                                                                                                                | 5.2 | 17        |
| 42 | Blooming of Irganox 3114® antioxidant onto a medical grade elastomer. Impact of the recrystallization conditions on the antioxidant polymorphism, on the film wettability and on the antioxidant learn leachability. International Journal of Pharmaceutics, 2012, 437, 89-99. | 5.2 | 11        |
| 43 | Measurements of Elastic Moduli of Pharmaceutical Compacts: A New Methodology Using Double<br>Compaction on a Compaction Simulator. Journal of Pharmaceutical Sciences, 2012, 101, 2220-2228.                                                                                   | 3.3 | 45        |
| 44 | Finite Element Method (FEM) modeling of the powder compaction of cosmetic products: Comparison between simulated and experimental results. Powder Technology, 2012, 224, 233-240.                                                                                              | 4.2 | 63        |
| 45 | Confocal micro-X-ray fluorescence analysis as a new tool for the non-destructive study of the elemental distributions in pharmaceutical tablets. Talanta, 2011, 85, 556-561.                                                                                                   | 5.5 | 27        |
| 46 | Aging of a medical device surface following cold plasma treatment: Influence of low molecular weight compounds on surface recovery. European Polymer Journal, 2011, 47, 2403-2413.                                                                                             | 5.4 | 18        |
| 47 | Identification of Different Copper Green Pigments in Renaissance Paintings by Cluster-TOF-SIMS<br>Imaging Analysis. Journal of the American Society for Mass Spectrometry, 2011, 22, 1729-1736.                                                                                | 2.8 | 40        |
| 48 | Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation. International Journal of Pharmaceutics, 2011, 410, 92-98.                                                                                                | 5.2 | 27        |
| 49 | Anisotropic Porous Structure of Pharmaceutical Compacts Evaluated by PGSTE-NMR in Relation to<br>Mechanical Property Anisotropy. Pharmaceutical Research, 2010, 27, 2221-2233.                                                                                                 | 3.5 | 9         |
| 50 | Animal urine as painting materials in African rock art revealed by cluster ToF‣IMS mass spectrometry imaging. Journal of Mass Spectrometry, 2010, 45, 944-950.                                                                                                                 | 1.6 | 21        |
| 51 | Polymorphism of Irganox 1076®: Discovery of new forms and direct characterization of the<br>polymorphs on a medical device by Raman microspectroscopy. European Journal of Pharmaceutics and<br>Biopharmaceutics, 2010, 75, 443-450.                                           | 4.3 | 21        |
| 52 | The microscopic (optical and SEM) examination of putrefaction fluid deposits (PFD). Potential interest<br>in forensic anthropology. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur<br>Klinische Medizin, 2008, 453, 377-386.                               | 2.8 | 16        |
| 53 | The patinas of the Dogon–Tellem statuary: A new vision through physico-chemical analyses. Journal of<br>Cultural Heritage, 2008, 9, 347-353.                                                                                                                                   | 3.3 | 20        |
| 54 | DISCOVERY AND CHARACTERIZATION OF AN UNKNOWN BLUEâ€GREEN MAYA PIGMENT: VESZELYITE*.<br>Archaeometry, 2008, 50, 658-667.                                                                                                                                                        | 1.3 | 4         |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of Ritual Blood in African Artifacts Using TOF-SIMS and Synchrotron Radiation<br>Microspectroscopies. Analytical Chemistry, 2007, 79, 9253-9260.                                           | 6.5 | 50        |
| 56 | Chemical imaging techniques for the analysis of complex mixtures: New application to the<br>characterization of ritual matters on African wooden statuettes. Analytica Chimica Acta, 2006, 570,<br>34-40. | 5.4 | 49        |