List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/359013/publications.pdf Version: 2024-02-01

SHUNSLIKE FURAMI

#	Article	IF	CITATIONS
1	Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nature Materials, 2022, 21, 81-87.	13.3	63
2	Modification of unconventional Hall effect with doping at the nonmagnetic site in a two-dimensional van der Waals ferromagnet. Physical Review Materials, 2022, 6, .	0.9	2
3	Hardware-Aware <i>In Situ</i> Learning Based on Stochastic Magnetic Tunnel Junctions. Physical Review Applied, 2022, 17, .	1.5	36
4	Nanometer-thin <i>L</i> 1-MnAl film with <i>B</i> 2-CoAl underlayer for high-speed and high-density STT-MRAM: Structure and magnetic properties. Applied Physics Letters, 2022, 120, .	1.5	6
5	Theory of Emergent Inductance with Spin-Orbit Coupling Effects. Physical Review Letters, 2022, 128, 147201.	2.9	6
6	Domain wall memory: Physics, materials, and devices. Physics Reports, 2022, 958, 1-35.	10.3	56
7	Observation of domain structure in non-collinear antiferromagnetic Mn3Sn thin films by magneto-optical Kerr effect. Applied Physics Letters, 2022, 120, .	1.5	12
8	Large Antisymmetric Interlayer Exchange Coupling Enabling Perpendicular Magnetization Switching by an In-Plane Magnetic Field. Physical Review Applied, 2022, 17, .	1.5	9
9	Local bifurcation with spin-transfer torque in superparamagnetic tunnel junctions. Nature Communications, 2022, 13, .	5.8	3
10	Dual-Port SOT-MRAM Achieving 90-MHz Read and 60-MHz Write Operations Under Field-Assistance-Free Condition. IEEE Journal of Solid-State Circuits, 2021, 56, 1116-1128.	3.5	24
11	Temperature dependence of the energy barrier in X/1X nm shape-anisotropy magnetic tunnel junctions. Applied Physics Letters, 2021, 118, .	1.5	10
12	Coherent magnetization reversal of a cylindrical nanomagnet in shape-anisotropy magnetic tunnel junctions. Applied Physics Letters, 2021, 118, .	1.5	5
13	Theory of relaxation time of stochastic nanomagnets. Physical Review B, 2021, 103, .	1.1	20
14	Nanosecond Random Telegraph Noise in In-Plane Magnetic Tunnel Junctions. Physical Review Letters, 2021, 126, 117202.	2.9	64
15	Field-free and sub-ns magnetization switching of magnetic tunnel junctions by combining spin-transfer torque and spin–orbit torque. Applied Physics Letters, 2021, 118, .	1.5	26
16	Double-Free-Layer Magnetic Tunnel Junctions for Probabilistic Bits. Physical Review Applied, 2021, 15, .	1.5	15
17	Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nature Materials, 2021, 20, 1364-1370	13.3	87
18	Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting. Nature Communications, 2021, 12, 2924.	5.8	40

#	Article	IF	CITATIONS
19	Correlation of anomalous Hall effect with structural parameters and magnetic ordering in Mn3+ <i>x</i> Sn1â^' <i>x</i> thin films. AIP Advances, 2021, 11, .	0.6	14
20	Influence of domain wall anisotropy on the current-induced hysteresis loop shift for quantification of the Dzyaloshinskii-Moriya interaction. Physical Review B, 2021, 103, .	1.1	8
21	Unconventional Hall effect and its variation with Co-doping in van der Waals Fe3GeTe2. Scientific Reports, 2021, 11, 14121.	1.6	13
22	Roadmap of Spin–Orbit Torques. IEEE Transactions on Magnetics, 2021, 57, 1-39.	1.2	225
23	Magnetization processes and magnetic domain structures in Ta/CoFeB/MgO stacks. Journal of Magnetism and Magnetic Materials, 2021, 529, 167699.	1.0	5
24	Sigmoidal curves of stochastic magnetic tunnel junctions with perpendicular easy axis. Applied Physics Letters, 2021, 119, .	1.5	10
25	Fast Switching Down to 3.5 ns in Sub-5-nm Magnetic Tunnel Junctions Achieved by Engineering Relaxation Time. , 2021, , .		5
26	Temperature dependence of intrinsic critical current in perpendicular easy axis CoFeB/MgO magnetic tunnel junctions. Applied Physics Letters, 2021, 119, .	1.5	8
27	Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn ₃ Sn thin films. Applied Physics Express, 2020, 13, 013001.	1.1	24
28	Energy Efficient Control of Ultrafast Spin Current to Induce Single Femtosecond Pulse Switching of a Ferromagnet. Advanced Science, 2020, 7, 2001996.	5.6	30
29	display="inline" overflow="scroll"> <mml:msub><mml:mi>Pt</mml:mi><mml:mn>38</mml:mn></mml:msub> <mml:msub><mml:msub> stretchy="false">[<mml:mi>Co</mml:mi><mml:mo></mml:mo><ml:mi>Ni<ml:msub> stretchy="false">1<ml:mi>n</ml:mi></ml:msub></ml:mi></mml:msub></mml:msub> Multilayers, Physical	ımi>Mn <mm:l:mo< td=""><td>nml;mi><mm< td=""></mm<></td></mm:l:mo<>	nml;mi> <mm< td=""></mm<>
30	Review Applied, 2020, 14. Probing edge condition of nanoscale CoFeB/MgO magnetic tunnel junctions by spin-wave resonance. Applied Physics Letters, 2020, 117, 202404.	1.5	3
31	Engineering Single-Shot All-Optical Switching of Ferromagnetic Materials. Nano Letters, 2020, 20, 8654-8660.	4.5	37
32	Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nature Communications, 2020, 11, 5715.	5.8	49
33	Giant voltage-controlled modulation of spin Hall nano-oscillator damping. Nature Communications, 2020, 11, 4006.	5.8	48
34	All-optical probe of magnetization precession modulated by spin–orbit torque. Applied Physics Letters, 2020, 117, .	1.5	6
35	Dual-Port Field-Free SOT-MRAM Achieving 90-MHz Read and 60-MHz Write Operations under 55-nm CMOS Technology and 1.2-V Supply Voltage. , 2020, , .		15
36	Antiferromagnetic spintronics. Journal of Applied Physics, 2020, 128, .	1.1	54

#	Article	IF	CITATIONS
37	Visualizing Magnetic Structure in 3D Nanoscale Ni–Fe Gyroid Networks. Nano Letters, 2020, 20, 3642-3650.	4.5	25
38	Probabilistic computing based on spintronics technology. , 2020, , .		1
39	Neuromorphic computing with antiferromagnetic spintronics. Journal of Applied Physics, 2020, 128, .	1.1	40
40	Composition dependence of spinâ^'orbit torque in Pt1â^' <i>x</i> Mn <i>x</i> /CoFeB heterostructures. Applied Physics Letters, 2020, 117, .	1.5	8
41	Current distribution in metallic multilayers from resistance measurements. Physical Review B, 2020, 101, .	1.1	6
42	Neuromorphic spintronics. Nature Electronics, 2020, 3, 360-370.	13.1	516
43	Scaling magnetic tunnel junction down to single-digit nanometers—Challenges and prospects. Applied Physics Letters, 2020, 116, .	1.5	49
44	High-Performance Shape-Anisotropy Magnetic Tunnel Junctions down to 2.3 nm. , 2020, , .		31
45	Spin-Pumping-Free Determination of Spin-Orbit Torque Efficiency from Spin-Torque Ferromagnetic Resonance. Physical Review Applied, 2019, 12, .	1.5	23
46	Write-error rate of nanoscale magnetic tunnel junctions in the precessional regime. Applied Physics Letters, 2019, 115, .	1.5	7
47	Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles. Nature Communications, 2019, 10, 5153.	5.8	165
48	Spin-transfer-torque magnetoresistive random-access memory (STT-MRAM) technology. , 2019, , 237-281.		7
49	Neuromorphic Computing: Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching (Adv. Mater. 23/2019). Advanced Materials, 2019, 31, 1970167.	11.1	1
50	Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching. Advanced Materials, 2019, 31, e1900636.	11.1	124
51	Reversal of domain wall chirality with ferromagnet thickness in W/(Co)FeB/MgO systems. Applied Physics Letters, 2019, 114, .	1.5	8
52	First demonstration of field-free SOT-MRAM with 0.35 ns write speed and 70 thermal stability under 400°C thermal tolerance by canted SOT structure and its advanced patterning/SOT channel technology. , 2019, , .		41
53	Stack structure and temperature dependence of spin-orbit torques in heterostructures with antiferromagnetic PtMn. Applied Physics Letters, 2019, 115, .	1.5	9
54	Integer factorization using stochastic magnetic tunnel junctions. Nature, 2019, 573, 390-393.	13.7	298

#	Article	IF	CITATIONS
55	Spin-orbit torque-induced switching of in-plane magnetized elliptic nanodot arrays with various easy-axis directions measured by differential planar Hall resistance. Applied Physics Letters, 2019, 114, 012410.	1.5	20
56	Giant perpendicular magnetic anisotropy in Ir/Co/Pt multilayers. Physical Review Materials, 2019, 3, .	0.9	29
57	Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions. Nature Communications, 2018, 9, 663.	5.8	141
58	Time and spatial evolution of spin–orbit torque-induced magnetization switching in W/CoFeB/MgO structures with various sizes. Japanese Journal of Applied Physics, 2018, 57, 04FN02.	0.8	12
59	Electric-field effect on the easy cone angle of the easy-cone state in CoFeB/MgO investigated by ferromagnetic resonance. Applied Physics Letters, 2018, 112, .	1.5	13
60	Scalability and wide temperature range operation of spin-orbit torque switching devices using Co/Pt multilayer nanowires. Applied Physics Letters, 2018, 113, .	1.5	10
61	Angle dependent magnetoresistance in heterostructures with antiferromagnetic and non-magnetic metals. Applied Physics Letters, 2018, 113, .	1.5	13
62	Evaluation of energy barrier of CoFeB/MgO magnetic tunnel junctions with perpendicular easy axis using retention time measurement. Japanese Journal of Applied Physics, 2018, 57, 04FN08.	0.8	20
63	An effect of capping-layer material on interfacial anisotropy and thermal stability factor of MgO/CoFeB/Ta/CoFeB/MgO/capping-layer structure. Applied Physics Letters, 2018, 113, 172401.	1.5	4
64	Perspective: Spintronic synapse for artificial neural network. Journal of Applied Physics, 2018, 124, .	1.1	67
65	Characterization of spin–orbit torque-controlled synapse device for artificial neural network applications. Japanese Journal of Applied Physics, 2018, 57, 1002B2.	0.8	17
66	Non-linear variation of domain period under electric field in demagnetized CoFeB/MgO stacks with perpendicular easy axis. Applied Physics Letters, 2018, 112, .	1.5	5
67	Spin-orbit torques in high-resistivity-W/CoFeB/MgO. Applied Physics Letters, 2018, 112, .	1.5	77
68	Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO. AIP Advances, 2017, 7, .	0.6	10
69	Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures. Applied Physics Letters, 2017, 110, .	1.5	66
70	Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices. Scientific Reports, 2017, 7, 45594.	1.6	35
71	Stack Structure Dependence of Magnetic Properties of PtMn/[Co/Ni] Films for Spin-Orbit Torque Switching Device. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	11
72	Annealing temperature dependence of magnetic properties of CoFeB/MgO stacks on different buffer layers. Japanese Journal of Applied Physics, 2017, 56, 0802B2.	0.8	14

#	Article	IF	CITATIONS
73	Magnetization switching schemes for nanoscale three-terminal spintronics devices. Japanese Journal of Applied Physics, 2017, 56, 0802A1.	0.8	40
74	Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Applied Physics Express, 2017, 10, 013007.	1.1	146
75	Spintronics based random access memory: a review. Materials Today, 2017, 20, 530-548.	8.3	689
76	Spin-orbit torque induced magnetization switching in Co/Pt multilayers. Applied Physics Letters, 2017, 111, .	1.5	26
77	Spin-orbit torques and Dzyaloshinskii-Moriya interaction in PtMn/[Co/Ni] heterostructures. Applied Physics Letters, 2017, 111, .	1.5	15
78	Current-induced magnetization switching in a nano-scale CoFeB-MgO magnetic tunnel junction under in-plane magnetic field. AIP Advances, 2017, 7, 055927.	0.6	7
79	Use of analog spintronics device in performing neuro-morphic computing functions. , 2017, , .		1
80	An artificial neural network with an analogue spin-orbit torque device. , 2017, , .		0
81	Critical role of W deposition condition on spin-orbit torque induced magnetization switching in nanoscale W/CoFeB/MgO. Applied Physics Letters, 2016, 109, .	1.5	69
82	Electric field control of Skyrmions in magnetic nanodisks. Applied Physics Letters, 2016, 108, .	1.5	53
83	Current-induced domain wall motion in magnetic nanowires with various widths down to less than 20 nm. Japanese Journal of Applied Physics, 2016, 55, 04EN01.	0.8	5
84	A sub-ns three-terminal spin-orbit torque induced switching device. , 2016, , .		29
85	Magnetic Properties of CoFeB–MgO Stacks With Different Buffer-Layer Materials (Ta or Mo). IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	16
86	Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Physics, 2016, 12, 333-336.	6.5	43
87	A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nature Nanotechnology, 2016, 11, 621-625.	15.6	466
88	Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nature Materials, 2016, 15, 535-541.	13.3	782
89	Atomic-Scale Structure and Local Chemistry of CoFeB–MgO Magnetic Tunnel Junctions. Nano Letters, 2016, 16, 1530-1536.	4.5	85
90	Current-Induced Magnetization Switching of CoFeB/Ta/[Co/Pd (Pt)]-Multilayers in Magnetic Tunnel Junctions With Perpendicular Anisotropy. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	7

#	Article	IF	CITATIONS
91	Proposal and demonstration of a new spin-orbit torque induced switching device. , 2015, , .		2
92	Dependence of magnetic properties of MgO/CoFeB/Ta stacks on CoFeB and Ta thicknesses. Japanese Journal of Applied Physics, 2015, 54, 04DM04.	0.8	9
93	Temperature dependence of energy barrier in CoFeB-MgO magnetic tunnel junctions with perpendicular easy axis. Applied Physics Letters, 2015, 107, .	1.5	27
94	Thermal stability of a magnetic domain wall in nanowires. Physical Review B, 2015, 91, .	1.1	21
95	Fabrication of a 3000-6-input-LUTs embedded and block-level power-gated nonvolatile FPGA chip using p-MTJ-based logic-in-memory structure. , 2015, , .		15
96	CoFeB Thickness Dependence of Damping Constants for Single and Double CoFeB-MgO Interface Structures. IEEE Magnetics Letters, 2015, 6, 1-3.	0.6	31
97	Localized precessional mode of domain wall controlled by magnetic field and dc current. Applied Physics Express, 2015, 8, 023003.	1.1	4
98	Three-terminal spintronics memory devices with perpendicular anisotropy. , 2015, , .		1
99	Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO. Applied Physics Letters, 2015, 107, .	1.5	167
100	Fabrication of a 3000-6-input-LUTs embedded and block-level power-gated nonvolatile FPGA chip using p-MTJ-based logic-in-memory structure. , 2015, , .		6
101	Process-induced damage and its recovery for a CoFeB–MgO magnetic tunnel junction with perpendicular magnetic easy axis. Japanese Journal of Applied Physics, 2014, 53, 103001.	0.8	17
102	Distribution of critical current density for magnetic domain wall motion. Journal of Applied Physics, 2014, 115, 17D508.	1.1	3
103	Material Stack Design With High Tolerance to Process-Induced Damage in Domain Wall Motion Device. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
104	Perpendicular-anisotropy CoFeB-MgO based magnetic tunnel junctions scaling down to 1X nm. , 2014, , .		20
105	Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm. Applied Physics Letters, 2014, 105, .	1.5	240
106	Domain Wall Motion Device for Nonvolatile Memory and Logic — Size Dependence of Device Properties. IEEE Transactions on Magnetics, 2014, 50, 1-6.	1.2	21
107	A delay circuit with 4-terminal magnetic-random-access-memory device for power-efficient time- domain signal processing. , 2014, , .		1
108	Co/Pt multilayer based reference layers in magnetic tunnel junctions for nonvolatile spintronics VLSIs. Japanese Journal of Applied Physics, 2014, 53, 04EM02.	0.8	33

#	Article	IF	CITATIONS
109	Plasma process induced physical damages on multilayered magnetic films for magnetic domain wall motion. Japanese Journal of Applied Physics, 2014, 53, 03DF03.	0.8	7
110	Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. Journal of Applied Physics, 2014, 115, 17C714.	1.1	30
111	Design and fabrication of a perpendicular magnetic tunnel junction based nonvolatile programmable switch achieving 40% less area using shared-control transistor structure. Journal of Applied Physics, 2014, 115, 178742.	1.1	11
112	10.5 A 90nm 20MHz fully nonvolatile microcontroller for standby-power-critical applications. , 2014, , .		63
113	Advances in spintronics devices for microelectronics — From spin-transfer torque to spin-orbit torque. , 2014, , .		9
114	Effect of spin Hall torque on current-induced precessional domain wall motion. Applied Physics Express, 2014, 7, 033005.	1.1	14
115	Three-terminal magnetic tunneling junction device with perpendicular anisotropy CoFeB sensing layer. Journal of Applied Physics, 2014, 115, 17B750.	1.1	6
116	Co/Pt multilayer-based magnetic tunnel junctions with a CoFeB/Ta insertion layer. Journal of Applied Physics, 2014, 115, 17C719.	1.1	22
117	MgO/CoFeB/Ta/CoFeB/MgO recording structure with low intrinsic critical current and high thermal stability. Journal of the Magnetics Society of Japan, 2014, 38, 56-60.	0.5	9
118	Depinning probability of a magnetic domain wall in nanowires by spin-polarized currents. Nature Communications, 2013, 4, 2293.	5.8	42
119	MgO/CoFeB/Ta/CoFeB/MgO Recording Structure in Magnetic Tunnel Junctions With Perpendicular Easy Axis. IEEE Transactions on Magnetics, 2013, 49, 4437-4440.	1.2	120
120	Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Applied Physics Letters, 2013, 103, .	1.5	30
121	Domain wall pinning by a stray field from NiFe on a Co/Ni nanowire. Journal of the Korean Physical Society, 2013, 63, 608-611.	0.3	5
122	Enhanced interface perpendicular magnetic anisotropy in Ta CoFeB MgO using nitrogen doped Ta underlayers. Applied Physics Letters, 2013, 102, .	1.5	117
123	Layer thickness dependence of the current-induced effective field vector in Ta CoFeB MgO. Nature Materials, 2013, 12, 240-245.	13.3	835
124	Thickness dependence of current-induced domain wall motion in a Co/Ni multi-layer with out-of-plane anisotropy. Applied Physics Letters, 2013, 102, .	1.5	25
125	Electrical endurance of Co/Ni wire for magnetic domain wall motion device. Applied Physics Letters, 2013, 102, 222410.	1.5	7
126	Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper. Applied Physics Letters, 2013, 102, .	1.5	99

#	Article	IF	CITATIONS
127	Electric Field Modulation of Magnetic Anisotropy in MgO/Co/Pt Structure. Applied Physics Express, 2013, 6, 073004.	1.1	38
128	Two-barrier stability that allows low-power operation in current-induced domain-wall motion. Nature Communications, 2013, 4, 2011.	5.8	43
129	Magnetic properties of MgO-[Co/Pt] multilayers with a CoFeB insertion layer. Journal of Applied Physics, 2013, 113, .	1.1	28
130	Comprehensive study of CoFeB-MgO magnetic tunnel junction characteristics with single- and double-interface scaling down to $1\rm X$ nm. , 2013, , .		49
131	Direct Observation of Domain Wall Motion in Co/Pt Wire under Gate Electric Field. Japanese Journal of Applied Physics, 2013, 52, 070206.	0.8	12
132	20-nm magnetic domain wall motion memory with ultralow-power operation. , 2013, , .		42
133	CoNi Films with Perpendicular Magnetic Anisotropy Prepared by Alternate Monoatomic Layer Deposition. Applied Physics Express, 2013, 6, 073010.	1.1	16
134	Current-Induced Effective Fields Detected by Magnetotrasport Measurements. Applied Physics Express, 2013, 6, 113002.	1.1	33
135	Effect of Current on Domain Wall Depinning Field in Co/Ni Nanowire. Japanese Journal of Applied Physics, 2012, 51, 028005.	0.8	1
136	Magnetic tunneling junction with Fe/NiFeB free layer for magnetic logic circuits. Journal of Applied Physics, 2012, 111, 07C709.	1.1	2
137	Domain-wall-motion cell with perpendicular anisotropy wire and in-plane magnetic tunneling junctions. Journal of Applied Physics, 2012, 111, 07C903.	1.1	10
138	Electrical control of Curie temperature in cobalt using an ionic liquid film. Applied Physics Letters, 2012, 100, .	1.5	128
139	Attenuation of propagating spin wave induced by layered nanostructures. Applied Physics Letters, 2012, 100, .	1.5	6
140	Electric Field Effect on Magnetization of an Fe Ultrathin Film. Applied Physics Express, 2012, 5, 063007.	1.1	15
141	Domain wall dynamics driven by spin transfer torque and the spin–orbit field. Journal of Physics Condensed Matter, 2012, 24, 024221.	0.7	8
142	High-speed and reliable domain wall motion device: Material design for embedded memory and logic application. , 2012, , .		23
143	Spintronics primitive gate with high error correction efficiency 6(P <inf>error</inf>) ² for logic-in memory architecture. , 2012, , .		8
144	RECENT PROGRESS OF PERPENDICULAR ANISOTROPY MAGNETIC TUNNEL JUNCTIONS FOR NONVOLATILE VLSI. Spin, 2012, 02, 1240003.	0.6	63

#	Article	IF	CITATIONS
145	Current-Induced Domain Wall Motion in Perpendicularly Magnetized Co/Ni Nanowire under In-Plane Magnetic Fields. Applied Physics Express, 2012, 5, 063001.	1.1	27
146	Current-induced magnetic domain wall motion below intrinsic threshold triggered by Walker breakdown. Nature Nanotechnology, 2012, 7, 635-639.	15.6	52
147	Temperature dependence of carrier spin polarization determined from current-induced domain wall motion in a Co/Ni nanowire. Applied Physics Letters, 2012, 100, .	1.5	39
148	High-speed simulator including accurate MTJ models for spintronics integrated circuit design. , 2012, ,		50
149	Spatial control of magnetic anisotropy for current induced domain wall injection in perpendicularly magnetized CoFeB MgO nanostructures. Applied Physics Letters, 2012, 100, 192411.	1.5	16
150	Observation of magnetic domain-wall dynamics transition in Co/Ni multilayered nanowires. Applied Physics Letters, 2012, 101, 022407.	1.5	5
151	Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure. Applied Physics Letters, 2012, 101, .	1.5	255
152	Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nature Communications, 2012, 3, 888.	5.8	149
153	Scalability Prospect of Three-Terminal Magnetic Domain-Wall Motion Device. IEEE Transactions on Magnetics, 2012, 48, 2152-2157.	1.2	22
154	Effect of Current on Domain Wall Depinning Field in Co/Ni Nanowire. Japanese Journal of Applied Physics, 2012, 51, 028005.	0.8	0
155	A 600MHz MTJ-based nonvolatile latch making use of incubation time in MTJ switching. , 2011, , .		19
156	Current-Induced Magnetic Domain Wall Motion in Co/Ni Nanowire at Low Temperature. Applied Physics Express, 2011, 4, 063003.	1.1	15
157	Magnetic field insensitivity of magnetic domain wall velocity induced by electrical current in Co/Ni nanowire. Applied Physics Letters, 2011, 98, .	1.5	57
158	Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Applied Physics Letters, 2011, 98, .	1.5	135
159	Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Materials, 2011, 10, 853-856.	13.3	398
160	Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nature Materials, 2011, 10, 194-197.	13.3	302
161	Wire Width Dependence of Threshold Current Density for Domain Wall Motion in Co/Ni Nanowires. IEEE Transactions on Magnetics, 2011, 47, 3089-3091.	1.2	9
162	Electrical Investigation of Notch Width Dependence of Domain Wall Structure in Co/Ni Nanowires. Japanese Journal of Applied Physics, 2011, 50, 073002.	0.8	0

#	Article	IF	CITATIONS
163	Current-induced domain wall motion in Co/Ni nano-wires with different Co and Ni thicknesses. Journal of Physics: Conference Series, 2011, 266, 012110.	0.3	8
164	Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Applied Physics Letters, 2011, 98, .	1.5	133
165	Effect of Device Temperature on Domain Wall Motion in a Perpendicularly Magnetized Co/Ni Wire. Applied Physics Express, 2011, 4, 013007.	1.1	20
166	Electrical Investigation of Notch Width Dependence of Domain Wall Structure in Co/Ni Nanowires. Japanese Journal of Applied Physics, 2011, 50, 073002.	0.8	1
167	Magnetic configuration of submicron-sized magnetic patterns in domain wall motion memory. Journal of Applied Physics, 2010, 107, .	1.1	17
168	Large thermal stability independent of critical current of domain wall motion in Co/Ni nanowires with step pinning sites. Journal of Applied Physics, 2010, 108, 113914.	1.1	18
169	Control of Multiple Magnetic Domain Walls by Current in a Co/Ni Nano-Wire. Applied Physics Express, 2010, 3, 073004.	1.1	108
170	Stack Structure Dependence of Co/Ni Multilayer for Current-Induced Domain Wall Motion. Applied Physics Express, 2010, 3, 113002.	1.1	36
171	Relation between critical current of domain wall motion and wire dimension in perpendicularly magnetized Co/Ni nanowires. Applied Physics Letters, 2009, 95, .	1.5	42
172	A 90nm 12ns 32Mb 2T1MTJ MRAM. , 2009, , .		26
173	Performance of shape-varying magnetic tunneling junction for high-speed magnetic random access memory cells. Journal of Applied Physics, 2009, 105, 07C921.	1.1	2
174	Evaluation of Scalability for Current-Driven Domain Wall Motion in a Co/Ni Multilayer Strip for Memory Applications. IEEE Transactions on Magnetics, 2009, 45, 3776-3779.	1.2	14
175	Intrinsic Threshold Current Density of Domain Wall Motion in Nanostrips With Perpendicular Magnetic Anisotropy for Use in Low-Write-Current MRAMs. IEEE Transactions on Magnetics, 2008, 44, 2539-2542.	1.2	28
176	Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy. Journal of Applied Physics, 2008, 103, .	1.1	41
177	Current-Driven Domain Wall Motion, Nucleation, and Propagation in a Co/Pt Multi-Layer Strip with a Stepped Structure. IEEE Transactions on Magnetics, 2008, 44, 2535-2538.	1.2	4
178	Current-Driven Domain Wall Motion in CoCrPt Wires with Perpendicular Magnetic Anisotropy. Applied Physics Express, 2008, 1, 011301.	1.1	55
179	Performance of write-line inserted magnetic tunneling junction for low-write-current magnetic random access memory cell. Journal of Applied Physics, 2008, 103, 07A711.	1.1	11
180	Low write-current magnetic random access memory cell with anisotropy-varied free layers. Journal of Applied Physics, 2008, 104, .	1.1	6

#	Article	IF	CITATIONS
181	Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. Journal of Applied Physics, 2008, 103, .	1.1	148
182	Reduction of critical current density for domain wall motion in U-shaped magnetic patterns. Journal of Applied Physics, 2008, 103, 07D914.	1.1	7
183	Scalable Cell Technology Utilizing Domain Wall Motion for High-speed MRAM. , 2007, , .		16
184	A 16-Mb Toggle MRAM With Burst Modes. IEEE Journal of Solid-State Circuits, 2007, 42, 2378-2385.	3.5	12
185	Reduction of Writing Field Distribution in a Magnetic Random Access Memory With Toggle Switching. IEEE Transactions on Magnetics, 2007, 43, 3512-3516.	1.2	1
186	A 16Mb toggle MRAM with burst modes. , 2006, , .		0
187	Nanostructure of CoPtCr–SiO ₂ Granular Films for Magnetic Recording Media. Materials Transactions, 2005, 46, 1802-1806.	0.4	1
188	Microstructure change of vanadium clusters in ZnO crystalline films by heat-treatment. Nanotechnology, 2004, 15, S420-S427.	1.3	3
189	Theoretical consideration of the stability of an L10magnetic phase in Fe–(Pd, Pt) alloy clusters. Philosophical Magazine Letters, 2004, 84, 33-40.	0.5	15
190	HRTEM and EELS Studies of L1 ₀ -Ordered FePt nano-Clusters on MgO Films Prepared Below 673 K. Materials Transactions, 2004, 45, 2012-2017.	0.4	10
191	HRTEM Studies of nm-Size FePd Particles Embedded in MgO after Annealing over 920 K. Materials Transactions, 2003, 44, 2048-2054.	0.4	9
192	Control of Domain Wall Position by Electrical Current in Structured Co/Ni Wire with Perpendicular Magnetic Anisotropy. Applied Physics Express, 0, 1, 101303.	1.1	91
193	Domain Wall Motion Induced by Electric Current in a Perpendicularly Magnetized Co/Ni Nano-Wire. Applied Physics Express, 0, 2, 053002.	1.1	110