Kenji Tsuruta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3590051/publications.pdf Version: 2024-02-01

KENII TSUDUTA

#	Article	IF	CITATIONS
1	Are calibrations of sap flow measurements based on thermal dissipation needed for each sample in Japanese cedar and cypress trees?. Trees - Structure and Function, 2022, 36, 1219-1229.	1.9	4
2	Soil carbon stock changes due to afforestation in Japan by the paired sampling method on an equivalent mass basis. Biogeochemistry, 2021, 153, 263-281.	3.5	2
3	Hydraulic architecture and internal water storage of Japanese cypress using measurements of sap flow and water potential. Ecohydrology, 2021, 14, e2325.	2.4	3
4	Plant trait database for <i>Cryptomeria japonica</i> and <i>Chamaecyparis obtusa</i> (SugiHinoki DB): Their physiology, morphology, anatomy and biochemistry. Ecological Research, 2020, 35, 274-275.	1.5	15
5	Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan. Geoderma, 2020, 377, 114487.	5.1	30
6	Slope position and water use by trees in a headwater catchment dominated by Japanese cypress: Implications for catchmentâ€scale transpiration estimates. Ecohydrology, 2020, 13, e2245.	2.4	9
7	Long-term effects of evapotranspiration on the flow duration curve in a coniferous plantation forest over 40 years. Hydrological Research Letters, 2020, 14, 1-8.	0.5	6
8	Look Back on 10 Years After Taking a Ph.D Suimon Mizu Shigen Gakkaishi, 2020, 33, 224-225.	0.1	0
9	Effects of thinning on canopy transpiration of a dense Moso bamboo stand in Western Japan. Journal of Forest Research, 2019, 24, 285-291.	1.4	3
10	Relationship between stem diameter and transpiration for <scp>Japanese</scp> cypress trees: Implications for estimating canopy transpiration. Ecohydrology, 2019, 12, e2097.	2.4	12
11	Effects of cryogenic vacuum distillation on the stable isotope ratios of soil water. Hydrological Research Letters, 2019, 13, 1-6.	0.5	14
12	Contribution of lianas to communityâ€level canopy transpiration in a warmâ€temperate forest. Functional Ecology, 2017, 31, 1690-1699.	3.6	11
13	Differences in sap fluxâ€based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology, 2016, 9, 1105-1116.	2.4	24
14	Interâ€annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest. Hydrological Processes, 2016, 30, 5012-5026.	2.6	18
15	Insignificant effects of culm age on transpiration in a managed Moso bamboo forest, Kyoto, Japan. Hydrological Research Letters, 2016, 10, 1-7.	0.5	7
16	Does measuring azimuthal variations in sap flux lead to more reliable stand transpiration estimates?. Hydrological Processes, 2016, 30, 2129-2137.	2.6	12
17	Canopy transpiration in two Japanese cypress forests with contrasting structures. Journal of Forest Research, 2015, 20, 464-474.	1.4	10
18	Standâ€scale transpiration of two Moso bamboo stands with different culm densities. Ecohydrology, 2015, 8, 450-459.	2.4	30

Kenji Tsuruta

#	Article	IF	CITATIONS
19	A model relating transpiration for Japanese cedar and cypress plantations with stand structure. Forest Ecology and Management, 2014, 334, 301-312.	3.2	25
20	Effects of soil water decline on diurnal and seasonal variations in sap flux density for differently aged Japanese cypress (Chamaecyparis obtusa) trees. Annals of Forest Research, 2014, 61, .	1.1	9
21	Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree Physiology, 2013, 33, 550-558.	3.1	61
22	An Overview of Stand-scale Transpiration Measurements Using the Sap Flow Technique for Evaluating the Effects of Forest Management Practices on Transpiration. Journal of the Japanese Forest Society, 2013, 95, 321-331.	0.2	4
23	Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrological Research Letters, 2013, 7, 60-65.	0.5	22
24	Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 2012, 156, 111-120.	4.8	52
25	Allometric Equations between Stem Diameter and Sapwood Area of Japanese Cedar and Japanese Cypress for Stand Transpiration Estimates Using Sap Flow Measurement. Suimon Mizu Shigen Gakkaishi, 2011, 24, 261-270.	0.1	10
26	Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research, 2010, 15, 398-403.	1.4	36
27	Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology, 2010, 30, 129-138.	3.1	72
28	Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest Ecology and Management, 2010, 260, 1295-1302.	3.2	59
29	Stand-scale transpiration estimates in a Moso bamboo forest: (I) Applicability of sap flux measurements. Forest Ecology and Management, 2010, 260, 1287-1294.	3.2	48
30	Applicability of Sap Flux Measurements in Moso Bamboo (Phyllostachys pubescens): Relationship between Water Absorption and Whole-tree Water Use Utilizing Granier Sensor Sap Flux Measurements Journal of the Japanese Forest Society, 2009, 91, 366-370.	0.2	10
31	Relationship Between Tree Height and Transpiration for Individual Japanese Cypress (Chamaecyparis) Tj ETQqI	1 0.784314	4 rggT /Over