Kenji Tsuruta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3590051/publications.pdf Version: 2024-02-01

KENII TSUDUTA

#	Article	IF	CITATIONS
1	Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology, 2010, 30, 129-138.	3.1	72
2	Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree Physiology, 2013, 33, 550-558.	3.1	61
3	Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest Ecology and Management, 2010, 260, 1295-1302.	3.2	59
4	Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 2012, 156, 111-120.	4.8	52
5	Stand-scale transpiration estimates in a Moso bamboo forest: (I) Applicability of sap flux measurements. Forest Ecology and Management, 2010, 260, 1287-1294.	3.2	48
6	Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research, 2010, 15, 398-403.	1.4	36
7	Standâ€scale transpiration of two Moso bamboo stands with different culm densities. Ecohydrology, 2015, 8, 450-459.	2.4	30
8	Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan. Geoderma, 2020, 377, 114487.	5.1	30
9	A model relating transpiration for Japanese cedar and cypress plantations with stand structure. Forest Ecology and Management, 2014, 334, 301-312.	3.2	25
10	Differences in sap fluxâ€based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology, 2016, 9, 1105-1116.	2.4	24
11	Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrological Research Letters, 2013, 7, 60-65.	0.5	22
12	Interâ€annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest. Hydrological Processes, 2016, 30, 5012-5026.	2.6	18
13	Plant trait database for <i>Cryptomeria japonica</i> and <i>Chamaecyparis obtusa</i> (SugiHinoki DB): Their physiology, morphology, anatomy and biochemistry. Ecological Research, 2020, 35, 274-275.	1.5	15
14	Effects of cryogenic vacuum distillation on the stable isotope ratios of soil water. Hydrological Research Letters, 2019, 13, 1-6.	0.5	14
15	Does measuring azimuthal variations in sap flux lead to more reliable stand transpiration estimates?. Hydrological Processes, 2016, 30, 2129-2137.	2.6	12
16	Relationship between stem diameter and transpiration for <scp>Japanese</scp> cypress trees: Implications for estimating canopy transpiration. Ecohydrology, 2019, 12, e2097.	2.4	12
17	Contribution of lianas to communityâ€level canopy transpiration in a warmâ€ŧemperate forest. Functional Ecology, 2017, 31, 1690-1699	3.6	11
18	Applicability of Sap Flux Measurements in Moso Bamboo (Phyllostachys pubescens): Relationship between Water Absorption and Whole-tree Water Use Utilizing Granier Sensor Sap Flux Measurements Journal of the Japanese Forest Society, 2009, 91, 366-370.	0.2	10

Kenji Tsuruta

#	Article	IF	CITATIONS
19	Allometric Equations between Stem Diameter and Sapwood Area of Japanese Cedar and Japanese Cypress for Stand Transpiration Estimates Using Sap Flow Measurement. Suimon Mizu Shigen Gakkaishi, 2011, 24, 261-270.	0.1	10
20	Canopy transpiration in two Japanese cypress forests with contrasting structures. Journal of Forest Research, 2015, 20, 464-474.	1.4	10
21	Slope position and water use by trees in a headwater catchment dominated by Japanese cypress: Implications for catchmentâ€scale transpiration estimates. Ecohydrology, 2020, 13, e2245.	2.4	9
22	Effects of soil water decline on diurnal and seasonal variations in sap flux density for differently aged Japanese cypress (Chamaecyparis obtusa) trees. Annals of Forest Research, 2014, 61, .	1.1	9
23	Relationship Between Tree Height and Transpiration for Individual Japanese Cypress (Chamaecyparis) Tj ETQq1 1	0.784314 0.78	rgßT /Overl
24	Insignificant effects of culm age on transpiration in a managed Moso bamboo forest, Kyoto, Japan. Hydrological Research Letters, 2016, 10, 1-7.	0.5	7
25	Long-term effects of evapotranspiration on the flow duration curve in a coniferous plantation forest over 40 years. Hydrological Research Letters, 2020, 14, 1-8.	0.5	6
26	An Overview of Stand-scale Transpiration Measurements Using the Sap Flow Technique for Evaluating the Effects of Forest Management Practices on Transpiration. Journal of the Japanese Forest Society, 2013, 95, 321-331.	0.2	4
27	Are calibrations of sap flow measurements based on thermal dissipation needed for each sample in Japanese cedar and cypress trees?. Trees - Structure and Function, 2022, 36, 1219-1229.	1.9	4
28	Effects of thinning on canopy transpiration of a dense Moso bamboo stand in Western Japan. Journal of Forest Research, 2019, 24, 285-291.	1.4	3
29	Hydraulic architecture and internal water storage of Japanese cypress using measurements of sap flow and water potential. Ecohydrology, 2021, 14, e2325.	2.4	3
30	Soil carbon stock changes due to afforestation in Japan by the paired sampling method on an equivalent mass basis. Biogeochemistry, 2021, 153, 263-281.	3.5	2
31	Look Back on 10 Years After Taking a Ph.D Suimon Mizu Shigen Gakkaishi, 2020, 33, 224-225.	0.1	0