
Chaorui Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3589565/publications.pdf Version: 2024-02-01

Снаории Хиб

#	Article	IF	CITATIONS
1	Combining carbon dots with WO3-x nanodots for utilizing the full spectrum of solar radiation in photocatalysis. Chemical Engineering Journal, 2022, 428, 131139.	6.6	31
2	Solar-irradiated carbon dots as high-density hot spots in sponge for high-efficiency cleanup of viscous crude oil spill. Journal of Materials Chemistry A, 2022, 10, 585-592.	5.2	28
3	Fabrication of high-performance graphene oxide/CuO/Cu2O film-coated copper foam for interfacial solar-driven water evaporation. Journal of Materials Science, 2022, 57, 3322-3336.	1.7	9
4	Design of ultrathin TiO2 nanosheets coated Ti plate for enhanced interfacial solar driven water evaporation performance. Journal of Alloys and Compounds, 2022, 909, 164843.	2.8	6
5	Chemical treatment of biomass wastes as carbon dot carriers for solar-driven water purification. Journal of Colloid and Interface Science, 2022, 621, 33-40.	5.0	18
6	A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation. Journal of Materials Chemistry A, 2022, 10, 11712-11720.	5.2	19
7	Hierarchical Poreâ€Gradient Silica Aerogel Balancing Heat and Water Management for Efficient Solarâ€Driven Water Evaporation. Advanced Sustainable Systems, 2022, 6, .	2.7	4
8	Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood. Science of the Total Environment, 2021, 759, 144317.	3.9	38
9	Hydroxypropylmethyl Cellulose Modified with Carbon Dots Exhibits Light-Responsive and Reversible Optical Switching. ACS Applied Materials & Interfaces, 2021, 13, 12375-12382.	4.0	17
10	A Gelationâ€Stabilized Strategy toward Photothermal Architecture Design for Highly Efficient Solar Water Evaporation. Solar Rrl, 2021, 5, 2100133.	3.1	27
11	Interaction Promotes the Formation and Photothermal Conversion of Carbon Dots/Polydopamine Composite for Solarâ€Driven Water Evaporation. Advanced Materials Interfaces, 2021, 8, 2100332.	1.9	15
12	Secondary granulation-assisted CVD growth of WS2, TiS2 and NbS2 crystals. Functional Materials Letters, 2021, 14, 2151029.	0.7	1
13	Photothermal, photocatalytic, and anti-bacterial Ti-Ag-O nanoporous powders for interfacial solar driven water evaporation. Ceramics International, 2021, 47, 19800-19808.	2.3	15
14	Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chemical Engineering Journal, 2021, 421, 129822.	6.6	57
15	Allâ€inâ€One Solar Interfacial Evaporation System with Highly Effective Heat Management and Water Collection. Solar Rrl, 2021, 5, .	3.1	8
16	Molybdenum Selenide/Porous Carbon Nanomaterial Heterostructures with Remarkably Enhanced Light-Boosting Peroxidase-like Activities. ACS Applied Materials & Interfaces, 2021, 13, 54274-54283.	4.0	4
17	Dynamic restructuring of carbon dots/copper oxide supported on mesoporous hydroxyapatite brings exceptional catalytic activity in the reduction of 4-nitrophenol. Applied Catalysis B: Environmental, 2020, 263, 118299.	10.8	62
18	A Cu2O-CDs-Cu three component catalyst for boosting oxidase-like activity with hot electrons. Chemical Engineering Journal, 2020, 382, 122484.	6.6	41

CHAORUI XUE

#	Article	IF	CITATIONS
19	Green, energy-efficient preparation of CDs-embedded BiPO4 heterostructure for better light harvesting and conversion. Chemical Engineering Journal, 2020, 391, 123551.	6.6	7
20	Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity. Chemical Engineering Journal, 2020, 394, 125045.	6.6	43
21	3D-carbon dots decorated black TiO2 nanotube Array@Ti foam with enhanced photothermal and photocatalytic activities. Ceramics International, 2019, 45, 17512-17520.	2.3	26
22	Self-assembly carbon dots for powerful solar water evaporation. Carbon, 2019, 149, 556-563.	5.4	109
23	TiCr alloy anodization for Cr-doped TiO ₂ nanotube array with improved photocatalytic activity. Materials Research Express, 2019, 6, 075014.	0.8	9
24	Facile Synthesis of Carbon Dots@2D MoS ₂ Heterostructure with Enhanced Photocatalytic Properties. Inorganic Chemistry, 2019, 58, 5746-5752.	1.9	31
25	Electronic and photocatalytic properties of modified MoS2/graphene quantum dots heterostructures: A computational study. Applied Surface Science, 2019, 473, 70-76.	3.1	14
26	Air–water interface solar heating using titanium gauze coated with reduced TiO2 nanotubes. Journal of Materials Science, 2018, 53, 9742-9754.	1.7	16
27	Structural phase transition and electrical properties of Sr ²⁺ substituted porous <scp>PMN</scp> â€ <scp>PZT</scp> ceramics. Journal of the American Ceramic Society, 2018, 101, 2197-2201.	1.9	3
28	MIL-125 and NH ₂ -MIL-125 Modified TiO ₂ Nanotube Array as Efficient Photocatalysts for Pollute Degradation. Chemistry Letters, 2018, 47, 711-714.	0.7	12
29	Cu _{1.8} S-Passivated carbon dots for enhancing photocatalytic activity. Chemical Communications, 2017, 53, 2343-2346.	2.2	32
30	Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties. Chemical Communications, 2017, 53, 3074-3077.	2.2	164
31	TiO ₂ nanotube array with "multi-layer―walled structure and its vulnerability to water. Functional Materials Letters, 2017, 10, 1750019.	0.7	1
32	Hybrid carbon dot/Ni 3 S 2 architecture supported on nickel foam for effective light collection and conversion. Chemical Engineering Journal, 2017, 321, 608-613.	6.6	20
33	Fluoride doped SrTiO ₃ /TiO ₂ nanotube arrays with a double layer walled structure for enhanced photocatalytic properties and bioactivity. RSC Advances, 2017, 7, 49759-49768.	1.7	14
34	Doubleâ€Walled ZrO ₂ Nanotube Array: Preparation and Enhanced Photocatalytic Activity. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700239.	0.8	4
35	Dual photoluminescence centers from inorganic-salt-functionalized carbon dots for ratiometric pH sensing. Journal of Materials Chemistry C, 2017, 5, 9849-9853.	2.7	46
36	A solid reaction towards in situ hybridization of carbon dots and conjugated polymers for enhanced light absorption and conversion. Chemical Communications, 2017, 53, 9426-9429.	2.2	25

CHAORUI XUE

#	Article	IF	CITATIONS
37	Cladding Layer on Well-Defined Double-Wall TiO ₂ Nanotubes. Langmuir, 2015, 31, 1575-1580.	1.6	13
38	Double-Wall TiO ₂ Nanotube Arrays: Enhanced Photocatalytic Activity and <i>In Situ</i> TEM Observations at High Temperature. ACS Applied Materials & Interfaces, 2014, 6, 19924-19932.	4.0	28
39	In Situ Transmission Electron Microscopic Observation of Double-wall TiO2 Nanotube Arrays at High Temperature. Chemistry Letters, 2014, 43, 1514-1516.	0.7	5
40	Direct SEM Observation of Non-electroconductive TiOF2 Nanotube Arrays Prepared by Anodization Using an Ionic Liquid as a Visualizing Reagent. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 239-242.	1.9	9