PatrÃ-cia F N FaÃ-sca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3589370/publications.pdf

Version: 2024-02-01

471061 552369 40 781 17 26 citations h-index g-index papers 45 45 45 563 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Predicting stable binding modes from simulated dimers of the D76N mutant of <mml:math altimg="si14.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi<math>\hat{s}^2</mml:mi<math></mml:mrow> </mml:math> 2-microglobulin. Computational and Structural Biotechnology Journal, 2021, 19, 5160-5169.	1.9	2
2	The folding space of protein \hat{I}^2 2-microglobulin is modulated by a single disulfide bridge. Physical Biology, 2021, 18, 056001.	0.8	4
3	A Specific Set of Heterogeneous Native Interactions Yields Efficient Knotting in Protein Folding. Journal of Physical Chemistry B, 2021, 125, 7359-7367.	1.2	6
4	The Early Phase of \hat{I}^2 2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Frontiers in Molecular Biosciences, 2020, 7, 578433.	1.6	10
5	The Early Phase of \hat{l}^2 2m Aggregation: An Integrative Computational Study Framed on the D76N Mutant and the \hat{l}^2 N6 Variant. Biomolecules, 2019, 9, 366.	1.8	11
6	Hydrophobic confinement modulates thermal stability and assists knotting in the folding of tangled proteins. Physical Chemistry Chemical Physics, 2019, 21, 11764-11775.	1.3	18
7	Protein Folding: An Introduction. Springer Briefs in Molecular Science, 2019, , 1-63.	0.1	8
8	Interview with Mike Kosterlitz. Europhysics News, 2019, 50, 12-14.	0.1	0
9	A tale of two tails: The importance of unstructured termini in the aggregation pathway of β2â€microglobulin. Proteins: Structure, Function and Bioinformatics, 2017, 85, 2045-2057.	1.5	17
10	Steric confinement and enhanced local flexibility assist knotting in simple models of protein folding. Physical Chemistry Chemical Physics, 2016, 18, 26391-26403.	1.3	30
11	Thermal unfolding simulations of NBD1 domain variants reveal structural motifs associated with the impaired folding of F508del-CFTR. Molecular BioSystems, 2016, 12, 2834-2848.	2.9	13
12	Knotted proteins: A tangled tale of Structural Biology. Computational and Structural Biotechnology Journal, 2015, 13, 459-468.	1.9	70
13	Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854 , $118-126$.	1.1	13
14	How determinant is N-terminal to C-terminal coupling for protein folding?. Physical Chemistry Chemical Physics, 2015, 17, 3512-3524.	1.3	14
15	A Simulated Intermediate State for Folding and Aggregation Provides Insights into ΔN6 β2-Microglobulin Amyloidogenic Behavior. PLoS Computational Biology, 2014, 10, e1003606.	1.5	34
16	Effects of knot type in the folding of topologically complex lattice proteins. Journal of Chemical Physics, 2014, 141, 025101.	1.2	41
17	Assessing the Effect of Loop Mutations in the Folding Space of \hat{I}^2 2-Microglobulin with Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2013, 14, 17256-17278.	1.8	17
18	Interplay between native topology and non-native interactions in the folding of tethered proteins. Physical Biology, 2013, 10, 016002.	0.8	17

#	Article	IF	CITATIONS
19	Structural and energetic determinants of co-translational folding. Journal of Chemical Physics, 2013, 138, 215101.	1.2	24
20	Effects of Knots on Protein Folding Properties. PLoS ONE, 2013, 8, e74755.	1.1	39
21	Robustness of atomistic Gŕmodels in predicting native-like folding intermediates. Journal of Chemical Physics, 2012, 137, 085102.	1.2	30
22	Identification of a Conserved Aggregation-Prone Intermediate State in the Folding Pathways of Spc-SH3 Amyloidogenic Variants. Journal of Molecular Biology, 2012, 422, 705-722.	2.0	43
23	Why Do Protein Folding Rates Correlate with Metrics of Native Topology?. PLoS ONE, 2012, 7, e35599.	1.1	24
24	How Difficult Is It to Fold a Knotted Protein? In Silico Insights from Surface-Tethered Folding Experiments. PLoS ONE, 2012, 7, e52343.	1.1	21
25	Nonâ€native interactions play an effective role in protein folding dynamics. Protein Science, 2010, 19, 2196-2209.	3.1	42
26	The protein folding transition state: Insights from kinetics and thermodynamics. Journal of Chemical Physics, 2010, 133, 125102.	1.2	14
27	The folding of knotted proteins: insights from lattice simulations. Physical Biology, 2010, 7, 016009.	0.8	46
28	The nucleation mechanism of protein folding: a survey of computer simulation studies. Journal of Physics Condensed Matter, 2009, 21, 373102.	0.7	23
29	On the relation between native geometry and conformational plasticity. Biophysical Chemistry, 2008, 138, 99-106.	1.5	3
30	Identifying critical residues in protein folding: Insights from Ï•-value and Pfold analysis. Journal of Chemical Physics, 2008, 129, 095108.	1.2	19
31	Conformational States and Protein Stability from a Proteomic Perspective. Current Proteomics, 2007, 4, 44-52.	0.1	4
32	Pathways to folding, nucleation events, and native geometry. Journal of Chemical Physics, 2007, 127, 145106.	1.2	11
33	Nucleation phenomena in protein folding: the modulating role of protein sequence. Journal of Physics Condensed Matter, 2007, 19, 285212.	0.7	5
34	Cooperativity and the origins of rapid, single-exponential kinetics in protein folding. Protein Science, 2006, 15, 1608-1618.	3.1	25
35	Native geometry and the dynamics of protein folding. Biophysical Chemistry, 2005, 115, 169-175.	1.5	14
36	The Gŕmodel revisited: Native structure and the geometric coupling between local and long-range contacts. Proteins: Structure, Function and Bioinformatics, 2005, 60, 712-722.	1.5	13

PATRÃCIA F N FAÃSCA

#	Article	IF	CITATIONS
37	Folding of small proteins: a matter of geometry?. Molecular Physics, 2005, 103, 2903-2910.	0.8	1
38	Melnikov method for parabolic orbits. Nonlinear Differential Equations and Applications, 2003, 10, 119-131.	0.4	3
39	Topological complexity, contact order, and protein folding rates. Journal of Chemical Physics, 2002, 117, 8587-8591.	1.2	19
40	Thermodynamic control and dynamical regimes in protein folding. Journal of Chemical Physics, 2002, 116, 7231-7237.	1.2	26