
Luisa Andrade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/358936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Applied Catalysis B: Environmental, 2016, 193, 67-74.	20.2	291
2	Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 2010, 35, 11601-11608.	7.1	245
3	An overview of photocatalysis phenomena applied to NOx abatement. Journal of Environmental Management, 2013, 129, 522-539.	7.8	213
4	A key review of building integrated photovoltaic (BIPV) systems. Engineering Science and Technology, an International Journal, 2017, 20, 833-858.	3.2	207
5	Extremely stable bare hematite photoanode for solar water splitting. Nano Energy, 2016, 23, 70-79.	16.0	171
6	Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 16515.	2.8	162
7	Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting. Advanced Energy Materials, 2015, 5, 1501537.	19.5	149
8	Photoelectrochemical water splitting using WO ₃ photoanodes: the substrate and temperature roles. Physical Chemistry Chemical Physics, 2016, 18, 5232-5243.	2.8	120
9	Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2013, 27, 334-349.	16.4	118
10	Perovskite solar cells: Materials, configurations and stability. Renewable and Sustainable Energy Reviews, 2018, 82, 2471-2489.	16.4	109
11	Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Applied Surface Science, 2016, 387, 183-189.	6.1	100
12	An innovative photoelectrochemical lab device for solar water splitting. Solar Energy Materials and Solar Cells, 2014, 128, 399-410.	6.2	83
13	Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy, 2017, 38, 218-231.	16.0	83
14	Temperature Impact on Perovskite Solar Cells Under Operation. ChemSusChem, 2019, 12, 2186-2194.	6.8	75
15	Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Applied Catalysis A: General, 2014, 484, 17-25.	4.3	67
16	Temperature effect on water splitting using a Si-doped hematite photoanode. Journal of Power Sources, 2014, 272, 567-580.	7.8	62
17	Laser assisted glass frit sealing of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2012, 96, 43-49.	6.2	59
18	Phenomenological modeling of dye-sensitized solar cells under transient conditions. Solar Energy, 2011, 85, 781-793.	6.1	53

Luisa Andrade

#	Article	IF	CITATIONS
19	Influence of Sodium Cations of N3 Dye on the Photovoltaic Performance and Stability of Dyeâ€&ensitized Solar Cells. ChemPhysChem, 2009, 10, 1117-1124.	2.1	45
20	Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO 2 microspheres. Progress in Organic Coatings, 2018, 118, 48-56.	3.9	42
21	Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. International Journal of Hydrogen Energy, 2010, 35, 8876-8883.	7.1	38
22	Transient phenomenological modeling of photoelectrochemical cells for water splitting – Application to undoped hematite electrodes. International Journal of Hydrogen Energy, 2011, 36, 175-188.	7.1	35
23	Effect of relative humidity during the preparation of perovskite solar cells: Performance and stability. Solar Energy, 2020, 199, 474-483.	6.1	35
24	Transparent graphene-based counter-electrodes for iodide/triiodide mediated dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 2028.	10.3	30
25	Modeling, simulation and design of dye sensitized solar cells. RSC Advances, 2014, 4, 2830-2844.	3.6	29
26	Intensification of photocatalytic pollutant abatement in microchannel reactor using TiO ₂ and TiO ₂ â€graphene. AICHE Journal, 2016, 62, 2794-2802.	3.6	28
27	TiO2/reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 326-336.	3.9	27
28	Preparation and photocatalytic activity of TiO2-exfoliated graphite oxide composite using an ecofriendly graphite oxidation method. Applied Surface Science, 2015, 359, 868-874.	6.1	26
29	Low temperature hermetic laser-assisted glass frit encapsulation of soda-lime glass substrates. Optics and Lasers in Engineering, 2017, 96, 107-116.	3.8	24
30	Laser sealed dye-sensitized solar cells: Efficiency and long term stability. Solar Energy Materials and Solar Cells, 2016, 157, 134-138.	6.2	23
31	Microencapsulation of citronella oil for solar-activated controlled release as an insect repellent. Applied Materials Today, 2016, 5, 90-97.	4.3	21
32	Photoelectrochromic devices: Influence of device architecture and electrolyte composition. Electrochimica Acta, 2016, 219, 99-106.	5.2	19
33	Dynamic Phenomenological Modeling of Pec Cells for Water Splitting Under Outdoor Conditions. Energy Procedia, 2012, 22, 23-34.	1.8	13
34	E-MRS/MRS Bilateral Energy Conference Innovative Technological Configurations of Photoelectrochemical Cells. Energy Procedia, 2012, 22, 35-40.	1.8	12
35	Synthesis and assessment of a graphene-based composite photocatalyst. Biochemical Engineering Journal, 2015, 104, 20-26.	3.6	11
36	Highly efficient SiO 2 /TiO 2 composite photoelectrodes for dye-sensitized solar cells. Solar Energy, 2017, 158, 905-916.	6.1	11

Luisa Andrade

#	Article	IF	CITATIONS
37	Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture. Energy Technology, 2022, 10, .	3.8	11
38	Selection of the ultimate perovskite solar cell materials and fabrication processes towards its industrialization: A review. Energy Science and Engineering, 2022, 10, 1478-1525.	4.0	9
39	Graphitic carbon nitride/few-layer graphene heterostructures for enhanced visible-LED photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2022, 47, 25555-25570.	7.1	9
40	Laser assisted dye-sensitized solar cell sealing: From small to large cells areas. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	8
41	A dye-sensitized solar cell model implementable in electrical circuit simulators. Solar Energy, 2015, 122, 169-180.	6.1	8
42	The effect of electrolyte re-utilization in the growth rate and morphology of TiO 2 nanotubes. Materials Letters, 2016, 171, 224-227.	2.6	8
43	Development of stable current collectors for large area dye-sensitized solar cells. Applied Surface Science, 2017, 423, 549-556.	6.1	8
44	Easy processing carbon paper electrode for highly efficient perovskite solar cells. Journal of Power Sources, 2020, 479, 229071.	7.8	8
45	Energy consumption and carbon footprint of perovskite solar cells. Energy Reports, 2022, 8, 475-481.	5.1	8
46	Novel carbonâ€based material for perovskite solar cells backâ€contact. International Journal of Energy Research, 2019, 43, 7541.	4.5	7
47	Tailoring the Anodic Hafnium Oxide Morphology Using Different Organic Solvent Electrolytes. Nanomaterials, 2020, 10, 382.	4.1	6
48	Insights in Perovskite Solar Cell Fabrication: Unraveling the Hidden Challenges of Each Layer. IEEE Journal of Photovoltaics, 2018, 8, 1029-1038.	2.5	5
49	Optimization of the NO photooxidation and the role of relative humidity. Environmental Pollution, 2018, 240, 541-548.	7.5	4
50	Influence of Different Cations of N3 Dyes on Their Photovoltaic Performance and Stability. International Journal of Chemical Engineering, 2009, 2009, 1-7.	2.4	3
51	Embedded current collectors for efficient large area perovskite solar cells. International Journal of Energy Research, 2022, 46, 5288-5295.	4.5	3
52	Characterization of a water-based paint for corrosion protection. Journal of Coatings Technology Research, 2012, 9, 365-374.	2.5	2
53	Highly Ordered Hexagonal Arrays of TiO2 Nanotubes. Microscopy and Microanalysis, 2015, 21, 5-6.	0.4	1
54	Flexible Perovskite Solar Cells for indoor photovoltaics with efficiency up to 31% using metal and carbon electrodes. , 0, , .		0