
Qunyu Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch. Food Hydrocolloids, 2011, 25, 1702-1709.	5.6	188
2	Effect of Ultrasonic Treatment on the Physicochemical Properties of Maize Starches Differing in Amylose Content. Starch/Staerke, 2008, 60, 646-653.	1.1	169
3	Preparation and properties of RS III from waxy maize starch with pullulanase. Food Hydrocolloids, 2013, 33, 19-25.	5.6	108
4	Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydrate Polymers, 2018, 184, 171-177.	5.1	84
5	Starch Nanoparticles–Graphene Aerogels with High Supercapacitor Performance and Efficient Adsorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 14064-14073.	3.2	68
6	Preparation and properties of RS4 citrate sweet potato starch by heat-moisture treatment. Food Hydrocolloids, 2016, 55, 172-178.	5.6	66
7	Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch. International Journal of Biological Macromolecules, 2019, 132, 1044-1050.	3.6	63
8	Preparation and emulsification properties of dialdehyde starch nanoparticles. Food Chemistry, 2019, 286, 467-474.	4.2	59
9	Hypoglycemic Effect of Chinese Yam (<i>Dioscorea opposita rhizoma</i>) Polysaccharide in Different Structure and Molecular Weight. Journal of Food Science, 2017, 82, 2487-2494.	1.5	53
10	Preparation, physicochemical properties, and in vitro digestibility of cross-linked resistant starch from pea starch. Starch/Staerke, 2013, 65, 947-953.	1.1	41
11	Pea starch (Pisum sativum L.) with slow digestion property produced using Î ² -amylase and transglucosidase. Food Chemistry, 2014, 164, 317-323.	4.2	41
12	Effect of heat-moisture treatment on the physicochemical properties and inÂvitro digestibility of the starch-guar complex of maize starch with varying amylose content. Food Hydrocolloids, 2018, 83, 213-221.	5.6	41
13	Preparation of starch nanospheres through hydrophobic modification followed by initial water dialysis. Carbohydrate Polymers, 2015, 115, 605-612.	5.1	40
14	Effect of dual modification with ultrasonic and electric field on potato starch. International Journal of Biological Macromolecules, 2020, 150, 637-643.	3.6	39
15	Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility. Carbohydrate Polymers, 2014, 113, 91-96.	5.1	38
16	Recrystallization and inÂvitro digestibility of wrinkled pea starch gel by temperature cycling. Food Hydrocolloids, 2016, 61, 712-719.	5.6	38
17	New Approach To Study Starch Gelatinization Applying a Combination of Hot-Stage Light Microscopy and Differential Scanning Calorimetry. Journal of Agricultural and Food Chemistry, 2013, 61, 1212-1218.	2.4	37
18	Effect of different drying methods on the structure and digestibility of short chain amylose crystals. Food Hydrocolloids, 2016, 52, 721-731.	5.6	37

Qunyu Gao

#	Article	IF	CITATIONS
19	New insight in crosslinking degree determination for crosslinked starch. Carbohydrate Research, 2018, 458-459, 13-18.	1.1	37
20	Effect of molecular weight of starch on the properties of cassava starch microspheres prepared in aqueous two-phase system. Carbohydrate Polymers, 2017, 177, 334-340.	5.1	35
21	Physicochemical properties and in vitro digestibility of high hydrostatic pressure treated waxy rice starch. International Journal of Biological Macromolecules, 2018, 120, 1030-1038.	3.6	35
22	Preparation and properties of granular cold-water-soluble porous starch. International Journal of Biological Macromolecules, 2020, 144, 656-662.	3.6	35
23	Synthesis, characterization and hydrophobicity of esterified waxy potato starch nanocrystals. Industrial Crops and Products, 2019, 130, 111-117.	2.5	33
24	Digestibility and physicochemical properties of starch-galactomannan complexes by heat-moisture treatment. Food Hydrocolloids, 2018, 77, 853-862.	5.6	28
25	The influence of different sugars on corn starch gelatinization process with digital image analysis method. Food Hydrocolloids, 2015, 43, 803-811.	5.6	27
26	Physicochemical properties and in vitro digestibility of resistant starch from mung bean (<i>Phaseolus radiatus</i>) starch. Starch/Staerke, 2011, 63, 171-178.	1.1	25
27	Effect of salts on the gelatinization process of Chinese yam (Dioscorea opposita) starch with digital image analysis method. Food Hydrocolloids, 2015, 51, 468-475.	5.6	25
28	Effect of granule size on the structure and digestibility of jackfruit seed starch. Food Hydrocolloids, 2021, 120, 106964.	5.6	25
29	Surface chemical functionalization of starch nanocrystals modified by 3-aminopropyl triethoxysilane. International Journal of Biological Macromolecules, 2019, 126, 987-993.	3.6	24
30	Corn, potato, and wrinkled pea starches with heat–moisture treatment: Structure and digestibility. Cereal Chemistry, 2018, 95, 603-614.	1.1	23
31	Changes in the Structure and Digestibility of Wrinkled Pea Starch with Malic Acid Treatment. Polymers, 2018, 10, 1359.	2.0	22
32	Preparation of hydroxybutyl starch with a high degree of substitution and its application in temperature-sensitive hydrogels. Food Chemistry, 2021, 355, 129472.	4.2	20
33	Application of digital image analysis method to study the gelatinization process of starch/ sodium chloride solution systems. Food Hydrocolloids, 2014, 35, 392-402.	5.6	19
34	Preparation of carboxymethyl starch/polyvinyl-alcohol electrospun composite nanofibers from a green approach. International Journal of Biological Macromolecules, 2021, 190, 601-606.	3.6	19
35	Degradation of p-chloroaniline by FeO _{3â^'x} H _{3â^'2x} /Fe ⁰ in the presence of persulfate in aqueous solution. RSC Advances, 2015, 5, 41079-41087.	1.7	16
36	Hydroxybutyl starch-based thermosensitive hydrogel for protein separation. International Journal of Biological Macromolecules, 2019, 134, 165-171.	3.6	16

Qunyu Gao

#	Article	IF	CITATIONS
37	A study on the thermal stability of amylose-amylopectin and amylopectin-amylopectin in cross-linked starches through iodine binding capacity. Food Hydrocolloids, 2019, 88, 86-91.	5.6	16
38	Structural characterizations and in vitro digestibility of acidâ€ŧreated wrinkled and smooth pea starch (<i>Pisum sativum</i> L.). Starch/Staerke, 2016, 68, 762-770.	1.1	14
39	Internal structure of high degree substitution acetylated potato starch by chemical surface gelatinization. International Journal of Biological Macromolecules, 2020, 145, 133-140.	3.6	14
40	Effect of Resistant Starch as Dietary Fiber Substitute on Cookies Quality Evaluation. Food Science and Technology Research, 2014, 20, 263-272.	0.3	12
41	Recrystallization kinetics of starch microspheres prepared by temperature cycling in aqueous two-phase system. Carbohydrate Polymers, 2018, 198, 233-240.	5.1	12
42	Effects of high-voltage electric field treatment on physicochemical properties of potato starch. Journal of Food Measurement and Characterization, 2019, 13, 3069-3076.	1.6	10
43	Preparation of graphene-starch composite film and its application in sensor materials. International Journal of Biological Macromolecules, 2022, 207, 365-373.	3.6	9
44	Effect of acidâ€ethanol treatment on physicochemical properties and in vitro digestibility of maize starches varying in <scp>AM</scp> content. Starch/Staerke, 2014, 66, 429-435.	1.1	8
45	Effect of enzymeâ€modified carboxymethyl starch as a fat replacer on the functional properties of sausages. Starch/Staerke, 2011, 63, 661-667.	1.1	6
46	Preparation of Rutinâ€Loaded Starch Nanospheres. Starch/Staerke, 2018, 70, 1700116.	1.1	6
47	Linear Dextrin as Potential Insulin Delivery System: Effect of Degree of Polymerization on the Physicochemical Properties of Linear Dextrin–Insulin Inclusion Complexes. Polymers, 2021, 13, 4187.	2.0	5
48	New insight into the determination of amylose content for maize starches through digital image analysis. Food Hydrocolloids, 2018, 83, 438-444.	5.6	3
49	Study on internal structure and digestibility of jackfruit seed starch revealed by chemical surface gelatinization. Food Hydrocolloids, 2022, 131, 107779.	5.6	3