Zhiyi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588544/publications.pdf

Version: 2024-02-01

933264 1058333 16 380 10 14 citations h-index g-index papers 16 16 16 306 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry. Energy, 2017, 139, 555-570.	4.5	65
2	Application of reduced-order models based on PCA & Depth amp; Kriging for the development of digital twins of reacting flow applications. Computers and Chemical Engineering, 2019, 121, 422-441.	2.0	56
3	Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: Combustion model formulation and implementation details. Applied Energy, 2018, 225, 637-655.	5.1	52
4	On the role of mixing models in the simulation of MILD combustion using finite-rate chemistry combustion models. Proceedings of the Combustion Institute, 2019, 37, 4531-4538.	2.4	40
5	Large Eddy Simulation of MILD combustion using finite rate chemistry: Effect of combustion sub-grid closure. Proceedings of the Combustion Institute, 2019, 37, 4519-4529.	2.4	36
6	Adsorption of Acid Orange II from Aqueous Solution by Plasma Modified Activated Carbon Fibers. Plasma Chemistry and Plasma Processing, 2013, 33, 65-82.	1.1	34
7	Assessment of On-the-Fly Chemistry Reduction and Tabulation Approaches for the Simulation of Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Energy & 2018, 32, 10121-10131.	2.5	20
8	Adsorption of Iron and Lead Ions from an Aqueous Solution by Plasma-Modified Activated Carbon. Industrial & Engineering Chemistry Research, 2012, 51, 15618-15625.	1.8	19
9	Characterization of jet-in-hot-coflow flames using tangential stretching rate. Combustion and Flame, 2019, 208, 281-298.	2.8	18
10	Study of MILD combustion using LES and advanced analysis tools. Proceedings of the Combustion Institute, 2021, 38, 5423-5432.	2.4	12
11	Generalised Eddy Dissipation Concept for MILD combustion regime at low local Reynolds and Damköhler numbers. Part 2: Validation of the model. Fuel, 2020, 278, 117773.	3.4	10
12	Numerical and experimental investigation of turbulent n-heptane jet-in-hot-coflow flames. Fuel, 2021, 283, 118748.	3.4	9
13	A Review of the Numerical Investigations of Jet-In-Hot-Coflow Burner With Reactor-Based Models. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	6
14	Finite-rate chemistry modelling of non-conventional combustion regimes. Energy Procedia, 2017, 142, 1570-1576.	1.8	2
15	A Skeletal Mechanism for MILD Combustion of <i>n</i> -Heptane/Air Mixtures. Combustion Science and Technology, 0, , 1-32.	1.2	1
16	Edcsmoke: A new combustion solver for stiff chemistry based on OpenFOAM®. AIP Conference Proceedings, 2017, , .	0.3	0