Sergue \tilde{A}^- O Fetissov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588533/publications.pdf

Version: 2024-02-01

		87843	102432
113	4,917	38	66
papers	citations	h-index	g-index
117	117	117	4962
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The effects of polyunsaturated fatty acid (PUFA) administration on the microbiome-gut-brain axis in adolescents with anorexia nervosa (the MiGBAN study): study protocol for a longitudinal, double-blind, randomized, placebo-controlled trial. Trials, 2022, 23, .	0.7	2
2	The Probiotic Strain H. alvei HA4597® Improves Weight Loss in Overweight Subjects under Moderate Hypocaloric Diet: A Proof-of-Concept, Multicenter Randomized, Double-Blind Placebo-Controlled Study. Nutrients, 2021, 13, 1902.	1.7	23
3	Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients, 2021, 13, 2474.	1.7	41
4	Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice—a new potential probiotic for appetite and body weight management. International Journal of Obesity, 2020, 44, 1041-1051.	1.6	55
5	Hafnia alvei HA4597 Strain Reduces Food Intake and Body Weight Gain and Improves Body Composition, Glucose, and Lipid Metabolism in a Mouse Model of Hyperphagic Obesity. Microorganisms, 2020, 8, 35.	1.6	25
6	Plasma enterobacterial ClpB levels and ClpB- and α-MSH–reactive immunoglobulins in lung cancer patients with and without anorexia. Nutrition, 2020, 78, 110952.	1.1	8
7	Food intake and meal pattern in response to hyperosmotic-induced dehydration in obese and lean Zucker rats. Nutrition, 2020, 70, 100011.	1.1	2
8	Genome, Environment, Microbiome and Metabolome in Autism (GEMMA) Study Design: Biomarkers Identification for Precision Treatment and Primary Prevention of Autism Spectrum Disorders by an Integrated Multi-Omics Systems Biology Approach. Brain Sciences, 2020, 10, 743.	1.1	17
9	Host Starvation and Female Sex Influence Enterobacterial ClpB Production: A Possible Link to the Etiology of Eating Disorders. Microorganisms, 2020, 8, 530.	1.6	11
10	On the origin of eating disorders: altered signaling between gut microbiota, adaptive immunity and the brain melanocortin system regulating feeding behavior. Current Opinion in Pharmacology, 2019, 48, 82-91.	1.7	50
11	Proteome modifications of gut microbiota in mice with activity-based anorexia and starvation: Role in ATP production. Nutrition, 2019, 67-68, 110557.	1.1	12
12	Neurobiology of Aggressive Behavior—Role of Autoantibodies Reactive With Stress-Related Peptide Hormones. Frontiers in Psychiatry, 2019, 10, 872.	1.3	8
13	Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling. Nutrients, 2019, 11, 2115.	1.7	22
14	Immunoglobulin G modulation of the melanocortin 4 receptor signaling in obesity and eating disorders. Translational Psychiatry, 2019, 9, 87.	2.4	29
15	Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition, 2019, 61, 43-48.	1.1	18
16	Bacterial Protein Mimetic of Peptide Hormone as a New Class of Protein- based Drugs. Current Medicinal Chemistry, 2019, 26, 546-553.	1.2	21
17	Neuropeptide-like signaling in the microbiota-gut-brain axis. Behavioral and Brain Sciences, 2019, 42, .	0.4	3
18	Affinity kinetics of leptin-reactive immunoglobulins are associated with plasma leptin and markers of obesity and diabetes. Nutrition and Diabetes, 2018, 8, 32.	1.5	11

$\mathsf{Sergue}\tilde{\mathsf{A}}^{\scriptscriptstyle -}\mathsf{O}\,\mathsf{Fetisson}$

#	Article	IF	CITATIONS
19	Autoantibodies reactive to adrenocorticotropic hormone can alter cortisol secretion in both aggressive and nonaggressive humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6576-E6584.	3.3	12
20	Increased affinity of ghrelin-reactive immunoglobulins in obese Zucker rats. Nutrition, 2017, 39-40, 98-99.	1.1	4
21	Sex differences in response to activity-based anorexia model in C57Bl/6 mice. Physiology and Behavior, 2017, 170, 1-5.	1.0	29
22	Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology, 2017, 13, 11-25.	4.3	273
23	Ghrelin-Reactive Immunoglobulins in Conditions of Altered Appetite and Energy Balance. Frontiers in Endocrinology, 2017, 8, 10.	1.5	20
24	New Insights in Anorexia Nervosa. Frontiers in Neuroscience, 2016, 10, 256.	1.4	144
25	Increased Ghrelin but Low Ghrelin-Reactive Immunoglobulins in a Rat Model of Methotrexate Chemotherapy-Induced Anorexia. Frontiers in Nutrition, 2016, 3, 23.	1.6	14
26	Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. International Journal of Eating Disorders, 2016, 49, 805-808.	2.1	86
27	Maintaining physical activity during refeeding improves body composition, intestinal hyperpermeability and behavior in anorectic mice. Scientific Reports, 2016, 6, 21887.	1.6	38
28	Few daily meals associated with functional dyspepsia. Nutrition, 2016, 32, 288.	1.1	0
29	Ghrelin treatment prevents development of activity based anorexia in mice. European Neuropsychopharmacology, 2016, 26, 948-958.	0.3	24
30	High-fat diet increases ghrelin-expressing cells in stomach, contributing to obesity. Nutrition, 2016, 32, 709-715.	1.1	24
31	Gut Commensal E.Âcoli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell Metabolism, 2016, 23, 324-334.	7.2	236
32	Sex-related effects of nutritional supplementation of Escherichia coli: Relevance to eating disorders. Nutrition, 2015, 31, 498-507.	1.1	24
33	Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: Effects on food intake and body weight. Neuroscience, 2015, 290, 445-453.	1.1	14
34	Ghrelin-reactive immunoglobulins and anxiety, depression and stress-induced cortisol response in adolescents. The TRAILS study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 59, 1-7.	2.5	12
35	Dopamine release in the lateral hypothalamus is stimulated by \hat{I}_{\pm} -MSH in both the anticipatory and consummatory phases of feeding. Psychoneuroendocrinology, 2015, 56, 79-87.	1.3	23
36	The number of preproghrelin mRNA expressing cells is increased in mice with activity-based anorexia. Neuropeptides, 2015, 51, 17-23.	0.9	17

SergueÃ⁻ O Fetissov

#	Article	IF	CITATIONS
37	Alteration of intestinal barrier function during activity-based anorexia in mice. Clinical Nutrition, 2014, 33, 1046-1053.	2.3	88
38	Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Translational Psychiatry, 2014, 4, e458-e458.	2.4	151
39	Effects of rabbit anti-α-melanocyte-stimulating hormone (α-MSH) immunoglobulins on α-MSH signaling related to food intake control. Neuropeptides, 2014, 48, 21-27.	0.9	23
40	Corticotropin (ACTH)-reactive immunoglobulins in adolescents in relation to antisocial behavior and stress-induced cortisol response. The TRAILS study. Psychoneuroendocrinology, 2013, 38, 3039-3047.	1.3	12
41	Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans. Nature Communications, 2013, 4, 2685.	5.8	87
42	Anti-neuropeptide Y plasma immunoglobulins in relation to mood and appetite in depressive disorder. Psychoneuroendocrinology, 2012, 37, 1457-1467.	1.3	15
43	Intestinal inflammation influences α-MSH reactive autoantibodies: Relevance to food intake and body weight. Psychoneuroendocrinology, 2012, 37, 94-106.	1.3	21
44	Obesity treatment by hypothalamic transplantation. Nutrition, 2012, 28, 594.	1.1	0
45	Gastric Electrical Stimulation Decreases Gastric Distension-Induced Central Nociception Response through Direct Action on Primary Afferents. PLoS ONE, 2012, 7, e47849.	1.1	15
46	Ghrelin, appetite and gastric electrical stimulation. Peptides, 2011, 32, 2283-2289.	1.2	10
47	Autoantibodies reacting with vasopressin and oxytocin in relation to cortisol secretion in mild and moderate depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 118-125.	2.5	31
48	The new link between gut–brain axis and neuropsychiatric disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 477-482.	1.3	62
49	Gastric electrical stimulation increases ghrelin production and inhibits catecholaminergic brainstem neurons in rats. European Journal of Neuroscience, 2011, 33, 276-284.	1.2	27
50	Ghrelin reactive autoantibodies in restrictive anorexia nervosa. Nutrition, 2011, 27, 407-413.	1.1	53
51	What increased consumption of licorice may reveal in anorexia nervosa. Nutrition, 2011, 27, 853-854.	1.1	4
52	Galanin and α-MSH autoantibodies in cerebrospinal fluid of patients with Alzheimer's disease. Journal of Neuroimmunology, 2011, 240-241, 114-120.	1.1	22
53	Neuropeptide Autoantibodies Assay. Methods in Molecular Biology, 2011, 789, 295-302.	0.4	25
54	Update on Ghrelin. International Journal of Peptides, 2010, 2010, 1-4.	0.7	10

 $\mathsf{Sergue}\tilde{\mathsf{A}}^{\scriptscriptstyle -}\mathsf{O}\,\mathsf{Fetisson}$

#	Article	IF	CITATIONS
55	Psychopathological and personality features in primary Sjogren's syndrome–associations with autoantibodies to neuropeptides. Rheumatology, 2010, 49, 1762-1769.	0.9	43
56	Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration. Physiology and Behavior, 2010, 101, 639-648.	1.0	23
57	Serotonin delivery into the ventromedial nucleus of the hypothalamus affects differently feeding pattern and body weight in obese and lean Zucker rats. Appetite, 2010, 54, 346-353.	1.8	20
58	Increased Immune Complexes of Hypocretin Autoantibodies in Narcolepsy. PLoS ONE, 2010, 5, e13320.	1.1	33
59	In search of the missing link in the regulation of appetite and body weight. Nutrition, 2009, 25, 252-254.	1.1	1
60	Regulation of feeding and anxiety by α-MSH reactive autoantibodies. Psychoneuroendocrinology, 2009, 34, 140-149.	1.3	53
61	Autoantibodies in autoimmune polyglandular syndrome type I patients react with major brain neurotransmitter systems. Journal of Comparative Neurology, 2009, 513, 1-20.	0.9	18
62	Autoantibodies in autoimmune polyglandular syndrome type I patients react with major brain neurotransmitter systems. Journal of Comparative Neurology, 2009, 513, spc1-spc1.	0.9	0
63	Autoantibodies in autoimmune polyglandular syndrome type I patients react with major brain neurotransmitter systems. Journal of Comparative Neurology, 2009, 513, spc1-spc1.	0.9	0
64	Physiopathologie de l'anorexie liée à l'âge. Nutrition Clinique Et Metabolisme, 2009, 23, 118-123.	0.2	2
65	Hypovolemia-induced obesity and diabetes. Metabolism: Clinical and Experimental, 2009, 58, 1678.	1.5	11
66	Aberrant agoutiâ€felated protein system in the hypothalamus of the <i>anx/anx</i> mouse is associated with activation of microglia. Journal of Comparative Neurology, 2008, 507, 1128-1140.	0.9	44
67	Autoantibodies against appetite-regulating peptide hormones and neuropeptides: Putative modulation by gut microflora. Nutrition, 2008, 24, 348-359.	1.1	154
68	NPY and its involvement in axon guidance, neurogenesis, and feeding. Nutrition, 2008, 24, 860-868.	1.1	62
69	Emerging role of autoantibodies against appetite-regulating neuropeptides in eating disorders. Nutrition, 2008, 24, 854-859.	1.1	58
70	The putative role of neuropeptide autoantibodies in anorexia nervosa. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 428-434.	1.3	24
71	Pituitary autoantibodies in autoimmune polyendocrine syndrome type 1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 949-954.	3.3	89
72	Evidence for hypothalamic dysregulation in mouse models of anorexia as well as in humans. Physiology and Behavior, 2007, 92, 278-282.	1.0	15

SergueÃ⁻ O Fetissov

#	Article	IF	CITATIONS
73	Conséquences digestives de l'anorexie mentale. Nutrition Clinique Et Metabolisme, 2007, 21, 166-171.	0.2	10
74	Aggressive Behavior Linked to Corticotropin-Reactive Autoantibodies. Biological Psychiatry, 2006, 60, 799-802.	0.7	65
75	Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. Journal of Comparative Neurology, 2006, 499, 357-390.	0.9	115
76	Estrogen induces a rapid increase in galanin levels in female rat hippocampal formationâ€fâ^'â€fpossibly a nongenomic/indirect effect. European Journal of Neuroscience, 2005, 21, 2089-2099.	1.2	22
77	Alterations of arcuate nucleus neuropeptidergic development in contactin-deficient mice: comparison with anorexia and food-deprived mice. European Journal of Neuroscience, 2005, 22, 3217-3228.	1.2	34
78	Maturation of the hypothalamic arcuate agouti-related protein system during postnatal development in the mouse. Developmental Brain Research, 2005, 155, 147-154.	2.1	70
79	Neuropeptide expression in rats exposed to chronic mild stresses. Psychopharmacology, 2005, 178, 115-124.	1.5	87
80	Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14865-14870.	3.3	144
81	Distribution of NPY receptors in the hypothalamus. Neuropeptides, 2004, 38, 175-188.	0.9	88
82	Characterization of neuropeptide Y Y2 and Y5 receptor expression in the mouse hypothalamus. Journal of Comparative Neurology, 2004, 470, 256-265.	0.9	64
83	Expression of hypothalamic neuropeptides after acute TCDD treatment and distribution of Ah receptor repressor. Regulatory Peptides, 2004, 119, 113-124.	1.9	27
84	Altered NPY and AgRP in membrane type-1 matrix metalloproteinase-deficient mice. NeuroReport, 2004, 15, 569-574.	0.6	10
85	Nicotine infusion into rat ventromedial nuclei and effects on monoaminergic system. NeuroReport, 2004, 15, 2293-2297.	0.6	13
86	Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 500-508.	1.4	60
87	Approaches to anorexia in rodents: focus on the anx/anx mouse. European Journal of Pharmacology, 2003, 480, 171-176.	1.7	22
88	Neuropeptide Y Targets in the Hypothalamus: Nitric Oxide Synthesizing Neurones Express Y1 Receptor. Journal of Neuroendocrinology, 2003, 15, 754-760.	1.2	23
89	Altered Hippocampal Expression of Neuropeptides in Seizure-prone GALR1 Knockout Mice. Epilepsia, 2003, 44, 1022-1033.	2.6	61
90	Directional cues for arcuate NPY projections are present in the adult brain. Experimental Neurology, 2003, 183, 116-123.	2.0	11

 $\mathsf{Sergue}\tilde{\mathsf{A}}^{-}\mathsf{O}\,\mathsf{Fetissov}$

#	Article	IF	CITATIONS
91	Alternatively Used Promoters and Distinct Elements Direct Tissue-Specific Expression of Nephrin. Journal of the American Society of Nephrology: JASN, 2003, 14, 352-358.	3.0	43
92	Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R905-R910.	0.9	99
93	Autoantibodies against Â-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17155-17160.	3.3	128
94	Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8938-8943.	3.3	229
95	Expression of microsomal glutathione S-transferase type 3 mRNA in the rat nervous system. Neuroscience, 2002, 115, 891-897.	1.1	6
96	Role of hypothalamic monoamines in nicotine-induced anorexia in menopausal rats. Surgery, 2001, 130, 133-142.	1.0	17
97	Nicotine alters the usual reciprocity between meal size and meal number in female rat. Physiology and Behavior, 2001, 74, 169-176.	1.0	57
98	Hypothalamic dopaminergic receptor expressions in anorexia of tumor-bearing rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R1907-R1916.	0.9	46
99	Intra-supraoptic nucleus sulpiride improves anorexia in tumor-bearing rats. NeuroReport, 2001, 12, 2429-2432.	0.6	7
100	VMN HYPOTHALAMIC DOPAMINE AND SEROTONIN IN ANORECTIC SEPTIC RATS. Shock, 2000, 13, 204-208.	1.0	11
101	Dopamine and serotonin VMN release is related to feeding status in obese and lean Zucker rats. NeuroReport, 2000, 11, 2069-2072.	0.6	54
102	VMN dopaminergic graft and feeding pattern in obese Zucker rats. International Journal of Obesity, 2000, 24, 376-381.	1.6	14
103	Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition, 2000, 16, 843-857.	1.1	373
104	Dopamine in the VMN of the hypothalamus is important for diurnal distribution of eating in obese male Zucker rats. Nutrition, 2000, 16, 65-66.	1.1	9
105	Synergistic effect of arcuate and raphe nuclei graft to alleviate insulinemia and obesity in Zucker rats. Acta Diabetologica, 2000, 37, 65-70.	1.2	7
106	Synchronized release of dopamine and serotonin in the medial and lateral hypothalamus of rats. Neuroscience, 2000, 101, 657-663.	1.1	58
107	Hypophysial and Meningeal Melanocytes in the Zucker Rat. Pigment Cell & Melanoma Research, 1999, 12, 323-330.	4.0	13
	Di I N. 1000 15 700 704		

108 Discussion. Nutrition, 1999, 15, 723-724.

1.1 3

#	Article	IF	CITATIONS
109	Combination of immunohistochemical and in situ hybridization methods to reveal tyrosine hydroxylase and oxytocin and vasopressin mRNAs in magnocellular neurons of obese Zucker rats. Brain Research Protocols, 1999, 4, 36-43.	1.7	6
110	Nicotine's effect on hypothalamic neurotransmitters and appetite regulation. Surgery, 1999, 126, 255-263.	1.0	99
111	Feeding pattern in obese Zucker rats after dopaminergic and serotonergic LHA grafts. NeuroReport, 1999, 10, 1049-1053.	0.6	10
112	Neuropeptide Y in the magnocellular hypothalamic neurons of obese Zucker rats. Neuropeptides, 1998, 32, 63-66.	0.9	12
113	Expression of tyrosine hydroxylase in magnocellular hypothalamic neurons of obese (fa/fa) and lean heterozygous (Fa/fa) Zucker rats. Molecular Brain Research, 1997, 50, 314-318.	2.5	15