Neil C Hyatt

List of Publications by Citations

Source: https://exaly.com/author-pdf/3588476/neil-c-hyatt-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

239 3,089 25 45 g-index

256 3,724 3.7 5.57 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
239	Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. <i>Advances in Applied Ceramics</i> , 2006 , 105, 3-12	2.3	264
238	Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 3313-3323	6	223
237	Pressure-induced intermediate-to-low spin state transition in LaCoO3. <i>Physical Review B</i> , 2003 , 67,	3.3	166
236	Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag. <i>Cement and Concrete Research</i> , 2015 , 74, 78-87	10.3	153
235	Development of magnesium phosphate cements for encapsulation of radioactive waste. <i>Advances in Applied Ceramics</i> , 2011 , 110, 151-156	2.3	65
234	Environment and oxidation state of molybdenum in simulated high level nuclear waste glass compositions. <i>Journal of Nuclear Materials</i> , 2005 , 340, 179-186	3.3	65
233	Dissolution of vitrified wastes in a high-pH calcium-rich solution. <i>Journal of Nuclear Materials</i> , 2013 , 435, 112-122	3.3	57
232	Cation disorder in Bi2Ln2Ti3O12 Aurivillius phases (Ln = La, Pr, Nd and Sm). <i>Materials Research Bulletin</i> , 2003 , 38, 837-846	5.1	52
231	An improved laboratory-based x-ray absorption fine structure and x-ray emission spectrometer for analytical applications in materials chemistry research. <i>Review of Scientific Instruments</i> , 2019 , 90, 02410	6 ^{1.7}	51
230	Role of Microstructure and Surface Defects on the Dissolution Kinetics of CeO2, a UO2 Fuel Analogue. <i>ACS Applied Materials & Early Interfaces</i> , 2016 , 8, 10562-71	9.5	46
229	Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 2989-3001	3.9	45
228	The structural role of Zr within alkali borosilicate glasses for nuclear waste immobilisation. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 1647-1656	3.9	42
227	The HADES Facility for High Activity Decommissioning Engineering & Science: part of the UK National Nuclear User Facility. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 818, 0120	2 2 4	35
226	Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure. <i>Inorganic Chemistry</i> , 2013 , 52, 1550-8	5.1	33
225	Dissolution of UK High-Level Waste Glass Under Simulated Hyperalkaline Conditions of a Colocated Geological Disposal Facility. <i>International Journal of Applied Glass Science</i> , 2013 , 4, 341-356	1.8	33
224	Synthesis, structure and characterisation of the n=4 Aurivillius phase Bi5Ti3CrO15. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 252-263	3.3	33
223	Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes. <i>Journal of Nuclear Materials</i> , 2015 , 462, 321-328	3.3	31

(2018-2013)

222	Preparation, characterisation and dissolution of a CeO2 analogue for UO2 nuclear fuel. <i>Journal of Nuclear Materials</i> , 2013 , 432, 182-188	3.3	31
221	The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms. Journal of Nuclear Materials, 2015, 456, 461-466	3.3	31
220	Corrosion of glass contact refractories for the vitrification of radioactive wastes: a review. <i>International Materials Reviews</i> , 2011 , 56, 226-242	16.1	31
219	Rapid synthesis of Pb5(VO4)3I, for the immobilisation of iodine radioisotopes, by microwave dielectric heating. <i>Journal of Nuclear Materials</i> , 2011 , 414, 352-359	3.3	30
218	Plutonium management policy in the United Kingdom: The need for a dual track strategy. <i>Energy Policy</i> , 2017 , 101, 303-309	7.2	29
217	Microanalytical X-ray imaging of depleted uranium speciation in environmentally aged munitions residues. <i>Environmental Science & Environmental Scienc</i>	10.3	26
216	The effects of Padiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom. <i>Journal of Nuclear Materials</i> , 2012 , 429, 353-3	6 3 ·3	26
215	Molten salt synthesis of MAX phases in the Ti-Al-C system. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 4585-4589	6	26
214	Contribution of energetically reactive surface features to the dissolution of CeO2 and ThO2 analogues for spent nuclear fuel microstructures. <i>ACS Applied Materials & District Action Section</i> , 1227	9 ⁹ 8 ⁵ 9	25
213	Rapid low temperature synthesis of a titanate pyrochlore by molten salt mediated reaction. <i>Journal of the European Ceramic Society</i> , 2012 , 32, 3211-3219	6	24
212	The fluorite related modulated structures of the Gd2(Zr2NCex)O7 solid solution: An analogue for Pu disposition. <i>Journal of Solid State Chemistry</i> , 2012 , 191, 2-9	3.3	24
211	Proper Ferroelectricity in the Dionlacobson Material CsBi2Ti2NbO10: Experiment and Theory. <i>Chemistry of Materials</i> , 2015 , 27, 8298-8309	9.6	23
210	Crystal structure and electrical characterisation of Bi2NbO5F: an Aurivillius oxide fluoride. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1193		23
209	Microwave Dielectric Properties of Hexagonal 12R-Ba3LaNb3O12 Ceramics. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 332-335	3.8	23
208	Dielectric Properties of the II winned IBH-Hexagonal Perovskite Ba8Nb4Ti3O24. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 336-339	3.8	23
207	Nanoscale mechanism of UO formation through uranium reduction by magnetite. <i>Nature Communications</i> , 2020 , 11, 4001	17.4	23
206	Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M. <i>American Mineralogist</i> , 2012 , 97, 291-298	2.9	22
205	Characterisation of a high pH cement backfill for the geological disposal of nuclear waste: The Nirex Reference Vault Backfill. <i>Applied Geochemistry</i> , 2018 , 89, 180-189	3.5	22

204	Corrosion of the International Simple Glass under acidic to hyperalkaline conditions. <i>Npj Materials Degradation</i> , 2018 , 2,	5.7	22
203	Physical and optical properties of the International Simple Glass. <i>Npj Materials Degradation</i> , 2019 , 3,	5.7	21
202	Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction. <i>Journal of Hazardous Materials</i> , 2013 , 263 Pt 2, 382-90	12.8	21
201	Iron phosphate glasses: Bulk properties and atomic scale structure. <i>Journal of Nuclear Materials</i> , 2017 , 494, 342-353	3.3	21
200	Oxidation state and local environment of selenium in alkali borosilicate glasses for radioactive waste immobilisation. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 2726-2734	3.9	21
199	High-pressure and -temperature ion exchange of aluminosilicate and gallosilicate natrolite. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13883-5	16.4	21
198	The structure of ion beam amorphised zirconolite studied by grazing angle X-ray absorption spectroscopy. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 1847-1852	1.2	21
197	The Use of Surrogates in Waste Immobilization Studies: A Case Study of Plutonium. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1107, 1		21
196	The initial dissolution rates of simulated UK MagnoxIIhORP blend nuclear waste glass as a function of pH, temperature and waste loading. <i>Mineralogical Magazine</i> , 2015 , 79, 1529-1542	1.7	20
195	Crystal structure and non-stoichiometry of cerium brannerite: Ce0.975Ti2O5.95. <i>Journal of Solid State Chemistry</i> , 2012 , 192, 172-178	3.3	20
194	Real-time gamma imaging of technetium transport through natural and engineered porous materials for radioactive waste disposal. <i>Environmental Science & Environmental Science</i>	10.3	20
193	Influence of octahedral tilting on the microwave dielectric properties of A3LaNb3O12 hexagonal perovskites (A=Ba, Sr). <i>Applied Physics Letters</i> , 2009 , 94, 192904	3.4	20
192	Mechanical properties of nuclear waste glasses. <i>Journal of Nuclear Materials</i> , 2011 , 408, 188-193	3.3	19
191	Oxidation Behavior and Mechanisms of TiAlN/VN Coatings. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2007 , 38, 2464-2478	2.3	19
190	Formation of alteration products during dissolution of vitrified ILW in a high-pH calcium-rich solution. <i>Journal of Nuclear Materials</i> , 2013 , 442, 33-45	3.3	18
189	Evolution of phase assemblage of blended magnesium potassium phosphate cement binders at 200°L and 1000°C. <i>Advances in Applied Ceramics</i> , 2015 , 114, 386-392	2.3	18
188	The Structural Role of Zn in Nuclear Waste Glasses. <i>International Journal of Applied Glass Science</i> , 2011 , 2, 343-353	1.8	18
187	Chemical durability of vitrified wasteforms: effects of pH and solution composition. <i>Mineralogical Magazine</i> , 2012 , 76, 2919-2930	1.7	18

186	Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: A vapour hydration study. <i>Journal of Nuclear Materials</i> , 2016 , 479, 639-646	3.3	18
185	Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition. Journal of Nuclear Materials, 2018 , 500, 11-14	3.3	18
184	Ferroelectric-paraelectric phase transition in the n=2 Aurivillius phase Bi3Ti1.5W0.5O9: A neutron powder diffraction study. <i>Physical Review B</i> , 2005 , 71,	3.3	17
183	Impact of rare earth ion size on the phase evolution of MoO3-containing aluminoborosilicate glass-ceramics. <i>Journal of Nuclear Materials</i> , 2018 , 510, 539-550	3.3	17
182	A systematic investigation of the phase assemblage and microstructure of the zirconolite CaZr1-xCexTi2O7 system. <i>Journal of Nuclear Materials</i> , 2020 , 535, 152137	3.3	16
181	MoO3 incorporation in magnesium aluminosilicate glasses. <i>Journal of Nuclear Materials</i> , 2015 , 458, 335	-3,432	15
180	Synthesis and characterisation of Ca1-xCexZrTi2-2xCr2xO7: Analogue zirconolite wasteform for the immobilisation of stockpiled UK plutonium. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 5909-591	196	15
179	CompositionBtructure Relationships in Simplified Nuclear Waste Glasses: 1. Mixed Alkali Borosilicate Glasses. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 151-159	3.8	15
178	Silver Zeolites: Iodide Occlusion and conversion to Sodalite hapotential 129I waste form?. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 932, 1		15
177	On the role of transition metal elements as structure-stabilising agents in cuprate superconductors. <i>Solid State Sciences</i> , 1999 , 1, 87-95		14
176	A Potential Wasteform for Cs Immobilization: Synthesis, Structure Determination, and Aqueous Durability of CsTiNbO. <i>Inorganic Chemistry</i> , 2016 , 55, 12686-12695	5.1	14
175	Response to the discussion by Hongyan Ma and Ying Li of the paper Characterization of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slag. Cement and Concrete Research, 2018, 103, 249-253	10.3	14
174	Thermal treatment of simulant plutonium contaminated materials from the Sellafield site by vitrification in a blast-furnace slag. <i>Journal of Nuclear Materials</i> , 2014 , 444, 186-199	3.3	13
173	The effect of uranium oxide additions on the structure of alkali borosilicate glasses. <i>Journal of Non-Crystalline Solids</i> , 2013 , 378, 282-289	3.9	13
172	Synthesis and characterisation of Pu-doped zirconolites (Ca1\(\text{Pux}\)\(\text{Zr}(Ti2-2xFe2x)\)\(\text{O7}. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.4	13
171	Encapsulation of caesium-loaded Ionsiv in cement. Cement and Concrete Research, 2010, 40, 1271-1277	10.3	13
170	Phase Transitions in Lanthanum-Doped Strontium Bismuth Tantalate. <i>Chemistry of Materials</i> , 2008 , 20, 6427-6433	9.6	13
169	Combined Quantitative X-ray Diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy Investigations of Crystal Evolution in CaOAl2O3BiO2IIiO2IIrO2IId2O3Ba2O System. Crystal Growth and Design, 2017, 17, 1079-1087	3.5	12

168	Reactive spark plasma sintering of Cs-exchanged chabazite: characterisation and durability assessment for Fukushima Daiichi NPP clean-up. <i>Journal of Nuclear Science and Technology</i> , 2019 , 56, 891-901	1	12
167	CompositionBtructure Relationships in Simplified Nuclear Waste Glasses: 2. The Effect of ZrO2 Additions. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 137-144	3.8	12
166	Sintering of CaF2 pellets as nuclear fuel analog for surface stability experiments. <i>Journal of Nuclear Materials</i> , 2011 , 419, 46-51	3.3	12
165	An Investigation into the Oxidation State of Molybdenum in Simplifies High Level Nuclear Waste Glass Compositions. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 807, 654		12
164	Zeolite - Salt Occlusion: A Potential Route for the Immobilisation of Iodine-129?. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 807, 212		12
163	Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides. <i>Scientific Reports</i> , 2018 , 8, 5320	4.9	11
162	Expanding the nuclear forensic toolkit: chemical profiling of uranium ore concentrate particles by synchrotron X-ray microanalysis. <i>RSC Advances</i> , 2015 , 5, 87908-87918	3.7	11
161	A feasibility investigation of speciation by Fe K-edge XANES using a laboratory X-ray absorption spectrometer. <i>Journal of Geosciences (Czech Republic)</i> , 2020 , 27-35	2.4	11
160	Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals. <i>Cement and Concrete Research</i> , 2021 , 143, 106375	10.3	11
159	The effect of pre-treatment parameters on the quality of glass-ceramic wasteforms for plutonium immobilisation, consolidated by hot isostatic pressing. <i>Journal of Nuclear Materials</i> , 2017 , 485, 253-261	3.3	10
158	Solution composition and particle size effects on the dissolution and solubility of a ThO2 microstructural analogue for UO2 matrix of nuclear fuel. <i>Radiochimica Acta</i> , 2015 , 103, 565-576	1.9	10
157	Insights into the fabrication and structure of plutonium pyrochlores. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2387-2403	13	10
156	Synthesis and characterisation of brannerite compositions (UCe) M TiO (M = Gd, Ca) for the immobilisation of MOX residues <i>RSC Advances</i> , 2018 , 8, 2092-2099	3.7	10
155	Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2016 , 371, 424-428	1.2	10
154	Multi-scale investigation of uranium attenuation by arsenic at an abandoned uranium mine, South Terras. <i>Npj Materials Degradation</i> , 2017 , 1,	5.7	10
153	Krypton irradiation damage in Nd-doped zirconolite and perovskite. <i>Journal of Nuclear Materials</i> , 2011 , 415, 67-73	3.3	10
152	A preliminary validation study of PuO2 incorporation into zirconolite glass-ceramics. <i>MRS Advances</i> , 2018 , 3, 1065-1071	0.7	9
151	Investigation of Ce incorporation in zirconolite glass-ceramics for UK plutonium disposition. <i>MRS Advances</i> , 2017 , 2, 699-704	0.7	9

(2020-2021)

150	Characterisation and disposability assessment of multi-waste stream in-container vitrified products for higher activity radioactive waste. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123764	12.8	9	
149	Investigation of the role of Mg and Ca in the structure and durability of aluminoborosilicate glass. <i>Journal of Non-Crystalline Solids</i> , 2019 , 512, 41-52	3.9	8	
148	Nonresonant valence-to-core x-ray emission spectroscopy of niobium. <i>Physical Review B</i> , 2018 , 97,	3.3	8	
147	Synthesis and characterisation of the hollandite solid solution Ba1.2-xCsxFe2.4-xTi5.6+xO16 for partitioning and conditioning of radiocaesium. <i>Journal of Nuclear Materials</i> , 2018 , 503, 164-170	3.3	8	
146	Structure-compressibility relationships in layered cuprate materials. <i>Physical Review B</i> , 2001 , 65,	3.3	8	
145	A Feasibility Investigation of Laboratory Based X-ray Absorption Spectroscopy in Support of Nuclear Waste Management. <i>MRS Advances</i> , 2020 , 5, 27-35	0.7	8	
144	Hot-isostatically pressed wasteforms for Magnox sludge immobilisation. <i>Journal of Nuclear Materials</i> , 2018 , 499, 233-241	3.3	8	
143	Thermal treatment of Cs-exchanged chabazite by hot isostatic pressing to support decommissioning of Fukushima Daiichi Nuclear Power Plant. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125250	12.8	8	
142	Influence of Lubricants and Attrition Milling Parameters on the Quality of Zirconolite Ceramics, Consolidated by Hot Isostatic Pressing, for Immobilization of Plutonium. <i>International Journal of Applied Ceramic Technology</i> , 2015 , 12, E92	2	7	
141	Slipcasting of MAX phase tubes for nuclear fuel cladding applications. <i>Nuclear Materials and Energy</i> , 2020 , 22, 100725	2.1	7	
140	Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses. <i>Journal of Nuclear Materials</i> , 2013 , 436, 139-149	3.3	7	
139	Synthesis and Characterization of Brannerite Compositions for MOX Residue Disposal. <i>MRS Advances</i> , 2017 , 2, 557-562	0.7	7	
138	High-pressure neutron diffraction study of the quasi-one-dimensional cuprate Sr2CuO3. <i>Physical Review B</i> , 2004 , 70,	3.3	7	
137	(Hg, Sb)Ba2Ca2Cu3O8+deltathick films on YSZ substrates. <i>Superconductor Science and Technology</i> , 2000 , 13, 169-172	3.1	7	
136	Local Structural Perturbations in HgBa2CuO4+\(\partial Journal of Solid State Chemistry, \textbf{1999}, 148, 119-128	3.3	7	
135	Synthesis, characterisation and corrosion behaviour of simulant Chernobyl nuclear meltdown materials. <i>Npj Materials Degradation</i> , 2020 , 4,	5.7	7	
134	Synthesis and Characterization of Brannerite Wasteforms for the Immobilization of Mixed Oxide Fuel Residues. <i>Procedia Chemistry</i> , 2016 , 21, 371-377		7	
133	Hot isostatic pressing: thermal treatment trials of inactive and radioactive simulant UK intermediate level waste. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 818, 012009	0.4	6	

132	Short communication: The dissolution of UK simulant vitrified high-level-waste in groundwater solutions. <i>Journal of Nuclear Materials</i> , 2020 , 538, 152245	3.3	6
131	A new approach to the immobilisation of technetium and transuranics: Co-disposal in a zirconolite ceramic matrix. <i>Journal of Nuclear Materials</i> , 2020 , 528, 151885	3.3	6
130	Hot Isostatically Pressed Zirconolite Wasteforms for Actinide Immobilisation. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 818, 012010	0.4	6
129	Characterization of and Structural Insight into Struvite-K, MgKPOI6HO, an Analogue of Struvite. <i>Inorganic Chemistry</i> , 2021 , 60, 195-205	5.1	6
128	Immobilisation of Prototype Fast Reactor raffinate in a barium borosilicate glass matrix. <i>Journal of Nuclear Materials</i> , 2018 , 508, 203-211	3.3	6
127	The formation of stoichiometric uranium brannerite (UTi2O6) glass-ceramic composites from the component oxides in a one-pot synthesis. <i>Journal of Nuclear Materials</i> , 2020 , 542, 152516	3.3	5
126	The Effect of A-Site Cation on the Formation of Brannerite (ATi2O6, A = U, Th, Ce) Ceramic Phases in a Glass-Ceramic Composite System. <i>MRS Advances</i> , 2020 , 5, 73-81	0.7	5
125	Transformation of Cs-IONSIVI into a ceramic wasteform by hot isostatic pressing. <i>Journal of Nuclear Materials</i> , 2018 , 498, 33-43	3.3	5
124	Solution Composition Effects on the Dissolution of a CeO2 analogue for UO2 and ThO2 nuclear fuels. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1744, 185-190		5
123	Graphite immobilisation in iron phosphate glass composite materials produced by microwave and conventional sintering routes. <i>Journal of Nuclear Materials</i> , 2014 , 454, 343-351	3.3	5
122	MBsbauer studies of materials used to immobilise industrial wastes. <i>Hyperfine Interactions</i> , 2013 , 217, 83-90	0.8	5
121	Crystallisation Within Simulated High Level Waste Borosilicate Glass. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 824, 252		5
120	Short communication on further elucidating the structure of amorphous U2O7 by extended X-ray absorption spectroscopy and DFT simulations. <i>Journal of Nuclear Materials</i> , 2020 , 542, 152476	3.3	5
119	Review of zirconolite crystal chemistry and aqueous durability. <i>Advances in Applied Ceramics</i> , 2021 , 120, 69-83	2.3	5
118	Synthesis of simulant hava-likelfuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown. <i>MRS Advances</i> , 2017 , 2, 609-614	0.7	4
117	Glass structure and crystallization in boro-alumino-silicate glasses containing rare earth and transition metal cations: a US-UK collaborative program. <i>MRS Advances</i> , 2019 , 4, 1029-1043	0.7	4
116	Resistance to amorphisation in Ca1-xLa2x/3TiO3 perovskites a bulk ion-irradiation study. <i>Acta Materialia</i> , 2019 , 180, 180-188	8.4	4
115	Thermal Conversion of Cs-exchanged IONSIV IE-911 into a Novel Caesium Ceramic Wasteform by Hot Isostatic Pressing. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1518, 67-72		4

(2013-2009)

114	Ceramic formulation and processing design for plutonium disposition. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1193,		4	
113	Interactions of Simulated High Level Waste (HLW) Calcine with Alkali Borosilicate Glass. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 807, 122		4	
112	Molybdenum in Nuclear Waste Glasses - Incorporation and Redox state. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 757, II5.4.1		4	
111	Nuclear Waste Management		4	
110	Effect of Ti4+ on the structure of nepheline (NaAlSiO4) glass. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 290, 333-351	5.5	4	
109	Thermal treatment for radioactive waste minimisation. <i>EPJ Nuclear Sciences & Technologies</i> , 2020 , 6, 25	1	4	
108	Temperature transformation of blended magnesium potassium phosphate cement binders. <i>Cement and Concrete Research</i> , 2021 , 141, 106332	10.3	4	
107	The dissolution of simulant UK Ca/Zn-modified nuclear waste glass: Insight into Stage III behavior. <i>MRS Advances</i> , 2020 , 5, 103-109	0.7	4	
106	Synthesis, structure, and characterization of the thorium zirconolite CaZr1-xThxTi2O7 system. Journal of the American Ceramic Society, 2021 , 104, 2937-2951	3.8	4	
105	The thermal decomposition of studtite: analysis of the amorphous phase. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2021 , 327, 1335-1347	1.5	4	
104	Corrigendum to The dissolution rates of simulated UK Magnox ThORP blend nuclear waste glass as a function of pH, temperature and waste loading[[Miner. Mag. 79, (2015) 1529[1542]. Mineralogical Magazine, 2018, 82, 939-942	1.7	4	
103	Structure analysis of vitusite glassderamic waste forms using extended X-ray absorption fine structures. <i>Ceramics International</i> , 2017 , 43, 4687-4691	5.1	3	
102	Interactions between Simulant Vitrified Nuclear Wastes and high pH solutions: A Natural Analogue Approach. <i>MRS Advances</i> , 2017 , 2, 669-675	0.7	3	
101	Synthesis and characterisation of high ceramic fraction brannerite (UTi2O6) glass-ceramic composites. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 818, 012018	0.4	3	
100	The Formation of Pitted Features on the International Simple Glass during Dynamic Experiments at Alkaline pH. <i>MRS Advances</i> , 2019 , 4, 993-999	0.7	3	
99	The Effect of Fradiation on Mechanical Properties of Model UK Nuclear Waste Glasses. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1518, 41-46		3	
98	Technetium-99m Transport and Immobilisation in Porous Media: Development of a Novel Nuclear Imaging Technique. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1518, 123-129		3	
97	Decontamination of Molten Salt Wastes for Pyrochemical Reprocessing of Nuclear Fuels. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1518, 97-102		3	

96	Rapid microwave synthesis of Pb5(VO4)3X (X = F, Cl, Br and I) vanadinite apatites for the immobilisation of halide radioisotopes <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1475, 221		3
95	Single Phase Ceramic Wasteforms for Plutonium Disposition. <i>Advances in Science and Technology</i> , 2006 , 45, 2004-2011	0.1	3
94	Synthesis and characterisation of transition metal substituted barium hollandite ceramics. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 932, 1		3
93	Synthesis, characterisation and crystal chemistry of Pb3Sr3Cu3O8Br: a new layered copper oxideBromide. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 366, 283-290	1.3	3
92	Solubility, speciation and local environment of chlorine in zirconolite glass-ceramics for the immobilisation of plutonium residues <i>RSC Advances</i> , 2020 , 10, 32497-32510	3.7	3
91	Crystal and Electronic Structures of ANaIO Periodate Double Perovskites (A = Sr, Ca, Ba): Candidate Wasteforms for I-129 Immobilization. <i>Inorganic Chemistry</i> , 2020 , 59, 18407-18419	5.1	3
90	Nuclear forensic signatures of studtite and EJO3 from a matrix of solution processing parameters. Journal of Nuclear Materials, 2021 , 544, 152713	3.3	3
89	Thermal treatment of nuclear fuel-containing Magnox sludge radioactive waste. <i>Journal of Nuclear Materials</i> , 2021 , 552, 152965	3.3	3
88	Irradiation Effects in Ceramics for Plutonium Disposition. Ceramic Transactions, 3-9	0.1	3
87	Ceramic Immobilization Options for Technetium. MRS Advances, 2017, 2, 753-758	0.7	2
86	Structure of NaFeSiO4, NaFeSi2O6, and NaFeSi3O8 glasses and glass-ceramics. <i>American Mineralogist</i> , 2020 , 105, 1375-1384	2.9	2
85	Tuning between Proper and Hybrid-Improper Mechanisms for Polar Behavior in Cs TiNbO Dion-Jacobson Phases. <i>Chemistry of Materials</i> , 2020 , 32, 8700-8712	9.6	2
84	Multimodal X-ray microanalysis of a UFeO: evidence for the environmental stability of ternary U(v) oxides from depleted uranium munitions testing. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1577-1585	4.3	2
83	Ba1.2-xCsxM1.2-x/2Ti6.8+x/2O16 (M = Ni, Zn) hollandites for the immobilisation of radiocaesium. MRS Advances, 2020 , 5, 55-64	0.7	2
82	Investigation of Processing Parameters for the Consolidation of Actinide Glass-Ceramic Wasteforms by Hot Isostatic Pressing. <i>MRS Advances</i> , 2016 , 1, 4269-4274	0.7	2
81	M0O3 incorporation in alkaline earth aluminosilicate glasses. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1744, 67-72		2
8o	Ceramic Immobilisation Options for Technetium. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1518, 111-116		2
79	Characterisation of Plasma Vitrified Simulant Plutonium Contaminated Material Waste. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 985, 1		2

78	Analytical STEM of Borosilicate Glasses Containing Molybdates <i>Materials Research Society Symposia Proceedings</i> , 2004 , 824, 372		2
77	Vapour Phase Hydration of Blended Oxide - Magnox Waste Glasses. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 807, 224		2
76	Synthesis and characterisation of Ce-doped zirconolite Ca0.80Ce0.20ZrTi1.60M0.40O7 (M = Fe, Al) formed by reactive spark plasma sintering (RSPS). <i>MRS Advances</i> ,1	0.7	2
75	Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes. <i>Npj Materials Degradation</i> , 2021 , 5,	5.7	2
74	Molten salt synthesis of Ce doped zirconolite for the immobilisation of pyroprocessing wastes and separated plutonium. <i>Ceramics International</i> , 2020 , 46, 29080-29089	5.1	2
73	An in-situ TEM study into the role of disorder, temperature and ballistic collisions on the accumulation of helium bubbles and voids in glass-ceramic composites. <i>Journal of Nuclear Materials</i> , 2021 , 548, 152836	3.3	2
72	Objective colour analysis from digital images as a nuclear forensic tool. <i>Forensic Science International</i> , 2021 , 319, 110678	2.6	2
71	Leaching of Nirex Reference Vault Backfill cement by clay, granite and saline groundwaters. <i>MRS Advances</i> , 2018 , 3, 1175-1180	0.7	2
70	Synthesis of Ca1-xCexZrTi2-2xAl2xO7 zirconolite ceramics for plutonium disposition. <i>Journal of Nuclear Materials</i> , 2021 , 556, 153198	3.3	2
69	Actinide Immobilization in Dedicated Wasteforms: An Alternative Pathway for the Long-Term Management of Existing Actinide Stockpiles 2021 , 650-662		2
68	The Structural Chemistry of Molybdenum in Model High Level Nuclear Waste Glasses, Investigated by MO K-Edge X-Ray Absorption Spectroscopy. <i>Ceramic Transactions</i> ,179-187	0.1	2
67	Forty years of durability assessment of nuclear waste glass by standard methods. <i>Npj Materials Degradation</i> , 2021 , 5,	5.7	2
66	Laboratory Based X-ray Absorption Spectroscopy of Iron Phosphate Glasses for Radioactive Waste Immobilisation: A Preliminary Investigation <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 818, 012020	0.4	1
65	Influence of Transition Metal Charge Compensation Species on Phase Assemblage in Zirconolite Ceramics for Pu Immobilisation. <i>MRS Advances</i> , 2020 , 5, 93-101	0.7	1
64	Radiation stability study on cerium loaded iron phosphate glasses by ion irradiation method. Journal of Radioanalytical and Nuclear Chemistry, 2020 , 323, 1381-1386	1.5	1
63	Ce and U speciation in wasteforms for thermal treatment of plutonium bearing wastes, probed by L3 edge XANES. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 818, 012019	0.4	1
62	Ion Beam Irradiation Induced Structural Modifications in Iron Phosphate Glasses: A Model System for Understanding Radiation Damage in Nuclear Waste Glasses. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1757, 65		1
61	Thermal treatment of plutonium contaminated material (PCM) waste. MRS Advances, 2017, 2, 735-740	0.7	1

60	On the existence of AgM9(VO4)6I (M = Ba, Pb). <i>RSC Advances</i> , 2017 , 7, 49004-49009	3.7	1
59	The Use of High Durability Alumino-Borosilicate Glass for the Encapsulation of High Temperature Reactor (HTR) Fuel. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1518, 3-8		1
58	Surface Sensitive Spectroscopy Study of Ion Beam Irradiation Induced Structural Modifications in Borosilicate Glasses. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1514, 75-80		1
57	Reducing the uncertainty of nuclear fuel dissolution: an investigation of UO2 analogue CeO2. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1518, 151-156		1
56	The Relative Merits of Oxides of Hafnium, Cerium and Thorium as Surrogates for Plutonium Oxide in Calcium Phosphate Ceramics. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1193,		1
55	In Situ Characterisation of Model UK Nuclear Waste Glasses by X-ray Absorption Spectroscopy Under Process Conditions. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1107, 1		1
54	Glass Development for Vitrification of Wet Intermediate Level Waste (WILW) from Decommissioning of the Hinkley Point Albite. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1124, 1		1
53	Synthesis, structure and superconducting properties of the (Hg0.65V0.35)Sr2(Nd1\subseteqSry)Cu2O6+\text{0} system. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 391, 160-168	1.3	1
52	The crystal structure of Hg0.75Mo0.25Sr2CuO4.5+determined by neutron powder diffraction. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 391, 230-236	1.3	1
51	Vapour Phase Hydration of Magnox Waste Glass. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 757, II5.10.1		1
50	Disorderly conduct in Bi2Ln2Ti3O12 Aurivillius phases (Ln = La, Pr, Nd, Sm) <i>Materials Research Society Symposia Proceedings</i> , 2002 , 755, 1		1
49	Synthesis, Characterization, and Crystal Structure of Dominant Uranium(V) Brannerites in the UTiAlO System. <i>Inorganic Chemistry</i> , 2021 , 60, 18112-18121	5.1	1
48	Systematic Development of Alkaline-Earth Borosilicate Glasses for Caesium Loaded Ion Exchange Resin Vitrification. <i>Ceramic Transactions</i> ,69-80	0.1	1
47	Investigation of ion irradiation induced damages in iron phosphate glasses: Role of electronic and nuclear losses in glass network modification. <i>Journal of Non-Crystalline Solids: X</i> , 2020 , 8, 100055	2.5	1
46	Rapid synthesis of zirconolite ceramic wasteform by microwave sintering for disposition of plutonium. <i>Journal of Nuclear Materials</i> , 2020 , 539, 152332	3.3	1
45	Synthesis and characterization of iodovanadinite using PdI an iodine source for the immobilisation of radioiodine <i>RSC Advances</i> , 2020 , 10, 25116-25124	3.7	1
44	Synthesis and in situ ion irradiation of A-site deficient zirconate perovskite ceramics. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19454-19466	13	1
43	A preliminary investigation of the molten salt mediated synthesis of Gd2TiO5 Etuffed pyrochlore. <i>MRS Advances</i> , 2021 , 6, 149-153	0.7	1

(2010-2021)

42	Synthesis and characterisation of HIP Ca0.80Ce0.20ZrTi1.60Cr0.40O7 zirconolite and observations of the ceramic@anister interface. <i>MRS Advances</i> , 2021 , 6, 112-118	0.7	1
41	Fenton-like treatment for reduction of simulated carbon-14 spent resin. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104740	6.8	1
40	On the existence of the compound Le3NbO7+[prepared under air atmosphere. <i>Journal of Rare Earths</i> , 2021 , 39, 596-599	3.7	1
39	ILW conditioning and performance 2021 , 548-563		1
38	Safely probing the chemistry of Chernobyl nuclear fuel using micro-focus X-ray analysis. <i>Journal of Materials Chemistry A</i> ,	13	1
37	The dissolution of simulant UK Ca/Zn-modified nuclear waste glass: the effect of increased waste loading. <i>MRS Advances</i> , 2021 , 6, 95-102	0.7	1
36	Chemical state mapping of simulant Chernobyl lava-like fuel containing material using micro-focused synchrotron X-ray spectroscopy. <i>Journal of Synchrotron Radiation</i> , 2021 , 28, 1672-1683	2.4	1
35	Symmetry and the Role of the Anion Sublattice in Aurivillius Oxyfluoride BiTiOF. <i>Inorganic Chemistry</i> , 2021 , 60, 14105-14115	5.1	1
34	Co/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin. <i>Chemosphere</i> , 2022 , 287, 132351	8.4	1
33	Low-Temperature Nitridation of FeO by Reaction with NaNH. <i>Inorganic Chemistry</i> , 2021 , 60, 2553-2562	5.1	1
32	A synchrotron X-ray spectroscopy study of titanium co-ordination in explosive melt glass derived from the trinity nuclear test <i>RSC Advances</i> , 2019 , 9, 12921-12927	3.7	O
31	Synthesis, characterisation and preliminary corrosion behaviour assessment of simulant Fukushima nuclear accident fuel debris. <i>MRS Advances</i> , 2020 , 5, 65-72	0.7	O
30	The Effect of Temperature on the Stability and Cerium Oxidation State of CeTiO in Inert and Oxidizing Atmospheres. <i>Inorganic Chemistry</i> , 2020 , 59, 17364-17373	5.1	0
29	Spectroscopic evaluation of U-cement mineral interactions: ettringite and hydrotalcite <i>Journal of Synchrotron Radiation</i> , 2022 , 29, 89-102	2.4	O
28	Comment on P reliminary assessment of modified borosilicate glasses for chromium and ruthenium immobilization [by Farid and Rahman. <i>Materials Chemistry and Physics</i> , 2017 , 192, 29-32	4.4	
27	Evaluation of novel leaching assessment of nuclear waste glasses. MRS Advances, 2017, 2, 635-640	0.7	
26	Hot Isostatic Pressing (HIP): A novel method to prepare Cr-doped UO2 nuclear fuel. <i>MRS Advances</i> , 2020 , 5, 45-53	0.7	
25	Stability of Cs-Ionsiv in Portland cement blends for radioactive waste disposal. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1265, 1		

24	Krypton and Helium Irradiation Damage in Yttria-stabilised Zirconia. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1298, 197	
23	Ferroelectric Behavior in the Aurivillius Phase Bi3T1.5W0.5O9. <i>Ceramic Transactions</i> , 2012 , 151-159	0.1
22	Processing and Characterisation of Fluorite-Related Ceramic Wasteforms for Immobilisation of Actinides. <i>Ceramic Transactions</i> , 2012 , 81-90	0.1
21	Diamond: Academic Innovation in Support of UK Radioactive Waste Management. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1124, 1	
20	An Evaluation of Single Phase Ceramic Formulations for Plutonium Disposition. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 985, 1	
19	Synthesis of Crystalline Ceramics for Actinide Immobilisation 2007 , 255	
18	Synthesis, structure and superconducting properties of the (Hg1kRex)Sr2(Nd1kJCay)Cu2O6+kJystem. Superconductor Science and Technology, 2004 , 17, 401-408	3.1
17	A Study of Magnox Waste Glass Under Conditions of High Temperature, Very Deep, Geological Disposal. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 807, 218	
16	Fission Product Immobilisation in Secondary Phases Formed During Magnox Waste Glass Dissolution at 60 °C: Experimental Results and Modelling <i>Materials Research Society Symposia Proceedings</i> , 2002 , 757, II5.11.1	
15	Ceramic-based stabilization/solidification of radioactive waste 2022 , 449-468	
14	HERMES - a GUI-based software tool for pre-processing of X-ray absorption spectroscopy data from laboratory Rowland circle spectrometers <i>Journal of Synchrotron Radiation</i> , 2022 , 29, 276-279	2.4
13	Investigation of Radiation Damage in Iron Phosphate Glasses by Soft X-Ray Absorption Spectroscopy: A Powerful Tool for Surface Characterization. <i>Springer Proceedings in Physics</i> , 2019 , 133-	139 ²
12	Synthesis and Structures of Gd2 (Zr2-xCex)O7: A Model Ceramic System for Plutonium Disposition. Ceramic Transactions,11-20	0.1
11	Developing the Plutonium Disposition Option: Ceramic Processing Concerns. <i>Ceramic Transactions</i> ,241	-249
10	MBsbauer studies of materials used to immobilise industrial wastes 2012 , 83-90	
9	The Characterization and Dissolution of High Level Waste Calcine in Alkali Borosilicate Glass. Ceramic Transactions,101-110	0.1
8	The Crystal Structures of Some Transition Metal Stabilised Mercury Cuprate Superconductors. <i>Ceramic Transactions</i> ,81-88	0.1
7	Advanced Ceramic Wasteforms for the Immobilisation of Radwastes. <i>Ceramic Transactions</i> ,11-22	0.1

LIST OF PUBLICATIONS

6	Preliminary investigation of chlorine speciation in zirconolite glass-ceramics for plutonium residues by analysis of Cl K-edge XANES. <i>MRS Advances</i> , 2020 , 5, 37-43	0.7
5	Advanced Gas-cooled Reactor SIMFuel Fabricated by Hot Isostatic Pressing: a Feasibility Investigation. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 818, 012011	0.4
4	Use of WetSEMI capsules for convenient multimodal scanning electron microscopy, energy dispersive X-ray analysis, and micro Raman spectroscopy characterisation of technetium oxides. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2021 , 328, 1313-1318	1.5
3	Synthesis of zirconolite-2M ceramics for immobilisation of neptunium. <i>Ceramics International</i> , 2021 , 47, 1047-1052	5.1
2	A high throughput computational investigation of the solid solution mechanisms of actinides and lanthanides in zirconolite <i>RSC Advances</i> , 2021 , 11, 25179-25186	3.7
1	Nuclear forensic signatures and structural analysis of uranyl oxalate, its products of thermal decomposition and Fe impurity dopant. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2021 , 327, 95	7- 9 73