Karen A Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588443/publications.pdf

Version: 2024-02-01

66343 123424 4,318 123 42 61 citations h-index g-index papers 124 124 124 2233 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surgical Considerations for an Osseointegrated Steady State Implant (OSIA2®) in Children. Laryngoscope, 2022, 132, 1088-1092.	2.0	4
2	Hearing Instability in Children with Congenital Cytomegalovirus: Evidence and Neural Consequences. Laryngoscope, 2022, 132, .	2.0	10
3	First Generation Osseointegrated Steady State Implant Benefits in Children With Hearing Loss. Otology and Neurotology, 2022, 43, 337-344.	1.3	2
4	Age-related changes to vestibular heave and pitch perception and associations with postural control. Scientific Reports, 2022, 12, 6426.	3.3	6
5	Cortical imbalance following delayed restoration of bilateral hearing in deaf adolescents. Human Brain Mapping, 2022, 43, 3662-3679.	3.6	2
6	Response characteristics of vestibular evoked myogenic potentials recorded over splenius capitis in young adults and adolescents. Acta Otorrinolaringologica (English Edition), 2022, 73, 164-176.	0.2	0
7	Cochlear implant datalogging accurately characterizes children's †auditory scenes'. Cochlear Implants International, 2021, 22, 85-95.	1.2	6
8	Synthetic Simulator for Surgical Training in Tracheostomy and Open Airway Surgery. Laryngoscope, 2021, 131, E2378-E2386.	2.0	7
9	Cochlear Implantation in Infants: Evidence of Safety. Trends in Hearing, 2021, 25, 233121652110146.	1.3	11
10	Cochlear Implantation in Infants: Why and How. Trends in Hearing, 2021, 25, 233121652110317.	1.3	13
11	Impact of the sensory environment on balance in children with bilateral cochleovestibular loss. Hearing Research, 2021, 400, 108134.	2.0	12
12	How I do it: Proximal cochlear implant electrode fixation using Ned's Knot. International Journal of Pediatric Otorhinolaryngology, 2021, 142, 110593.	1.0	3
13	Exposure to Spoken Communication in Children With Cochlear Implants During the COVID-19 Lockdown. JAMA Otolaryngology - Head and Neck Surgery, 2021, 147, 368.	2.2	11
14	Response characteristics of vestibular evoked myogenic potentials recorded over splenius capitis in young adults and adolescents. Acta Otorrinolaringol \tilde{A}^3 gica Espa $\tilde{A}\pm$ ola, 2021, , .	0.4	1
15	Effects of long-term unilateral cochlear implant use on large-scale network synchronization in adolescents. Hearing Research, 2021, 409, 108308.	2.0	O
16	Functional Consequences of Poor Binaural Hearing in Development: Evidence From Children With Unilateral Hearing Loss and Children Receiving Bilateral Cochlear Implants. Trends in Hearing, 2021, 25, 233121652110512.	1.3	11
17	The Importance of Access to Bilateral Hearing through Cochlear Implants in Children. Seminars in Hearing, 2021, 42, 381-388.	1.2	2
18	BalanCI: Head-Referenced Cochlear Implant Stimulation Improves Balance in Children with Bilateral Cochleovestibular Loss. Audiology and Neuro-Otology, 2020, 25, 60-71.	1.3	14

#	Article	IF	Citations
19	Live porcine model for surgical training in tracheostomy and openâ€airway surgery. Laryngoscope, 2020, 130, 2063-2068.	2.0	9
20	Age-related variability in pediatric scalp thickness: Implications for auditory prostheses. International Journal of Pediatric Otorhinolaryngology, 2020, 130, 109853.	1.0	9
21	Cochlear Implant Use Remains Consistent Over Time in Children With Single-Sided Deafness. Ear and Hearing, 2020, 41, 678-685.	2.1	17
22	Interhemispheric auditory connectivity requires normal access to sound in both ears during development. NeuroImage, 2020, 208, 116455.	4.2	13
23	Long-term Implant Usage and Quality-of-Life in Sequential Bilateral Pediatric Cochlear Implantation. Otology and Neurotology, 2020, 41, 39-44.	1.3	15
24	"Aural Patching―After Bilateral Cochlear Implantation Is Challenging for Children With Prior Long-Term Unilateral Implant Experience. Ear and Hearing, 2020, 41, 1407-1411.	2.1	1
25	Can Differences in Early Hearing Development Be Distinguished by the LittlEARs Auditory Questionnaire?. Ear and Hearing, 2020, 41, 998-1008.	2.1	2
26	Unilateral Hearing Loss and Single-Sided Deafness in Children: an Update on Diagnosis and Management. Current Otorhinolaryngology Reports, 2020, 8, 259-266.	0.5	8
27	Hearing and speech benefits of cochlear implantation in children: A review of the literature. International Journal of Pediatric Otorhinolaryngology, 2020, 133, 109984.	1.0	89
28	Music Perception Testing Reveals Advantages and Continued Challenges for Children Using Bilateral Cochlear Implants. Frontiers in Psychology, 2020, 10, 3015.	2.1	3
29	A survey of pediatric cochlear implant recipients as young adults. International Journal of Pediatric Otorhinolaryngology, 2020, 132, 109902.	1.0	7
30	The limitation of risk factors as a means of prognostication in auditory neuropathy spectrum disorder of perinatal onset. International Journal of Pediatric Otorhinolaryngology, 2020, 135, 110112.	1.0	5
31	Efficacy of a selective imaging paradigm prior to pediatric cochlear implantation. Laryngoscope, 2019, 129, 2627-2633.	2.0	9
32	Animal and human studies on developmental monaural hearing loss. Hearing Research, 2019, 380, 60-74.	2.0	35
33	Management of Traumatic Injury and Osseointegration Failure in Children With Percutaneous Bone Conduction Implants. Otology and Neurotology, 2019, 40, 1040-1046.	1.3	2
34	Binaural hearing is impaired in children with hearing loss who use bilateral hearing aids. Journal of the Acoustical Society of America, 2019, 146, 4352-4362.	1.1	3
35	Extrusion of straight cochlear implant electrodes May be diminished by proximal fixation. International Journal of Pediatric Otorhinolaryngology, 2019, 116, 164-167.	1.0	11
36	Children with unilateral cochlear nerve canal stenosis have bilateral cochleovestibular anomalies. Laryngoscope, 2019, 129, 2403-2408.	2.0	4

3

#	Article	IF	Citations
37	Cortical plasticity with bimodal hearing in children with asymmetric hearing loss. Hearing Research, 2019, 372, 88-98.	2.0	16
38	Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hearing Research, 2019, 372, 52-61.	2.0	50
39	Emberger syndrome: A rare association with hearing loss. International Journal of Pediatric Otorhinolaryngology, 2018, 108, 82-84.	1.0	7
40	Cortical hemispheric asymmetries are present at young ages and further develop into adolescence. Human Brain Mapping, 2018, 39, 941-954.	3.6	24
41	Cortical Processing of Level Cues for Spatial Hearing is Impaired in Children with Prelingual Deafness Despite Early Bilateral Access to Sound. Brain Topography, 2018, 31, 270-287.	1.8	10
42	Impact of Consistency in Daily Device Use on Speech Perception Abilities in Children with Cochlear Implants: Datalogging Evidence. Journal of the American Academy of Audiology, 2018, 29, 835-846.	0.7	50
43	Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia. PLoS ONE, 2018, 13, e0205857.	2.5	50
44	Vestibular evoked myogenic potential testing as an objective measure of vestibular stimulation with cochlear implants. Laryngoscope, 2017, 127, E75-E81.	2.0	32
45	Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously. Journal of Neuroscience, 2017, 37, 2349-2361.	3.6	26
46	Splenius capitis is a reliable target for measuring cervical vestibular evoked myogenic potentials in adults. European Journal of Neuroscience, 2017, 45, 1212-1223.	2.6	13
47	Music perception improves in children with bilateral cochlear implants or bimodal devices. Journal of the Acoustical Society of America, 2017, 141, 4494-4507.	1.1	29
48	Benefits of Music Training for Perception of Emotional Speech Prosody in Deaf Children With Cochlear Implants. Ear and Hearing, 2017, 38, 455-464.	2.1	63
49	Simultaneous bilateral cochlear implants: Developmental advances do not yet achieve normal cortical processing. Brain and Behavior, 2017, 7, e00638.	2.2	32
50	Preliminary experience using a cochlear implant with a novel linear pedestal design. International Journal of Pediatric Otorhinolaryngology, 2017, 93, 42-46.	1.0	1
51	Clinical Characteristics of Children With Single-Sided Deafness Presenting for Candidacy Assessment for Unilateral Cochlear Implantation. Current Otorhinolaryngology Reports, 2017, 5, 275-285.	0.5	6
52	Binaural integration: a challenge to overcome for children with hearing loss. Current Opinion in Otolaryngology and Head and Neck Surgery, 2017, 25, 514-519.	1.8	9
53	Stimulation from Cochlear Implant Electrodes Assists with Recovery from Asymmetric Perceptual Tilt: Evidence from the Subjective Visual Vertical Test. Frontiers in Integrative Neuroscience, 2016, 10, 32.	2.1	19
54	Using Balance Function to Screen for Vestibular Impairment in Children With Sensorineural Hearing Loss and Cochlear Implants. Otology and Neurotology, 2016, 37, 926-932.	1.3	48

#	Article	IF	CITATIONS
55	Factors Affecting Daily Cochlear Implant Use in Children: Datalogging Evidence. Journal of the American Academy of Audiology, 2016, 27, 824-838.	0.7	38
56	Hearing Benefit and Rated Satisfaction in Children with Unilateral Conductive Hearing Loss Using a Transcutaneous Magnetic-Coupled Bone-Conduction Hearing Aid. Journal of the American Academy of Audiology, 2016, 27, 790-804.	0.7	16
57	Balancing current levels in children with bilateral cochlear implants using electrophysiological and behavioral measures. Hearing Research, 2016, 335, 193-206.	2.0	14
58	The Role of Electrophysiological Testing in Pediatric Cochlear Implantation. , 2016, , 123-142.		2
59	Unilateral Hearing Loss Is Associated With Impaired Balance in Children. Otology and Neurotology, 2016, 37, 1589-1595.	1.3	33
60	Early unilateral cochlear implantation promotes mature cortical asymmetries in adolescents who are deaf. Human Brain Mapping, 2016, 37, 135-152.	3.6	48
61	Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception. Hearing Research, 2016, 338, 76-87.	2.0	87
62	Characterization of retentive capacity of the subpericranial pocket in cochlear implants with and without a pedestal. Laryngoscope, 2016, 126, 1175-1179.	2.0	6
63	Sad and happy emotion discrimination in music by children with cochlear implants. Child Neuropsychology, 2016, 22, 366-380.	1.3	27
64	Vestibular and Balance Impairment Contributes to Cochlear Implant Failure in Children. Otology and Neurotology, 2015, 36, 1029-1034.	1.3	53
65	Experience Changes How Emotion in Music Is Judged: Evidence from Children Listening with Bilateral Cochlear Implants, Bimodal Devices, and Normal Hearing. PLoS ONE, 2015, 10, e0136685.	2.5	25
66	Auditory neuropathy spectrum disorder (ANSD) and cochlear implantation. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 1980-1987.	1.0	49
67	Asymmetric Hearing During Development: The Aural Preference Syndrome and Treatment Options. Pediatrics, 2015, 136, 141-153.	2.1	135
68	The Effects of Asymmetric Hearing on Bilateral Brainstem Function: Findings in Children with Bimodal (Electric and Acoustic) Hearing. Audiology and Neuro-Otology, 2015, 20, 13-20.	1.3	19
69	Binaural Fusion and Listening Effort in Children Who Use Bilateral Cochlear Implants: A Psychoacoustic and Pupillometric Study. PLoS ONE, 2015, 10, e0117611.	2.5	51
70	Perception of Binaural Cues Develops in Children Who Are Deaf through Bilateral Cochlear Implantation. PLoS ONE, 2014, 9, e114841.	2.5	58
71	Normal-like Motor Speech Parameters Measured in Children With Long-term Cochlear Implant Experience Using a Novel Objective Analytic Technique. JAMA Otolaryngology - Head and Neck Surgery, 2014, 140, 967.	2.2	5
72	Children's identification of familiar songs from pitch and timing cues. Frontiers in Psychology, 2014, 5, 863.	2.1	10

#	Article	IF	Citations
73	Infant Sleep Machines and Hazardous Sound Pressure Levels. Pediatrics, 2014, 133, 677-681.	2.1	13
74	Unilateral Cochlear Implant Use Promotes Normal-Like Loudness Perception in Adolescents With Childhood Deafness. Ear and Hearing, 2014, 35, e291-e301.	2.1	10
75	Central auditory development after long-term cochlear implant use. Clinical Neurophysiology, 2013, 124, 1868-1880.	1.5	31
76	Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf. Brain, 2013, 136, 1609-1625.	7.6	180
77	Vestibular End-Organ Dysfunction in Children With Sensorineural Hearing Loss and Cochlear Implants. Otology and Neurotology, 2013, 34, 422-428.	1.3	112
78	From Nucleus 24 to 513. Otology and Neurotology, 2013, 34, 436-442.	1.3	17
79	Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf. Frontiers in Psychology, 2013, 4, 719.	2.1	60
80	Binaural Interactions Develop in the Auditory Brainstem of Children Who Are Deaf: Effects of Place and Level of Bilateral Electrical Stimulation. Journal of Neuroscience, 2012, 32, 4212-4223.	3.6	59
81	Electrophysiologic and Behavioral Outcomes of Cochlear Implantation in Children With Auditory Nerve Hypoplasia. Ear and Hearing, 2012, 33, 3-18.	2.1	62
82	European Bilateral Pediatric Cochlear Implant Forum Consensus Statement. Otology and Neurotology, 2012, 33, 561-565.	1.3	79
83	Children Using Cochlear Implants Capitalize on Acoustical Hearing for Music Perception. Frontiers in Psychology, 2012, 3, 425.	2.1	37
84	Speech Detection in Noise and Spatial Unmasking in Children With Simultaneous Versus Sequential Bilateral Cochlear Implants. Otology and Neurotology, 2011, 32, 1057-1064.	1.3	66
85	Exploring the relationship between head anatomy and cochlear implant stability in children. Cochlear Implants International, 2011, 12, S14-S18.	1.2	4
86	Auditory Development in Children who Use Cochlear Implants-Past Experience Guides Present Research Japan Journal of Logopedics and Phoniatrics, 2011, 52, 202-208.	0.1	0
87	Packing of the Cochleostomy Site Affects Auditory Nerve Response Thresholds in Precurved Off-Stylet Cochlear Implants. Otology and Neurotology, 2010, 31, 204-209.	1.3	12
88	Cortical Function in Children Receiving Bilateral Cochlear Implants Simultaneously or After a Period of Interimplant Delay. Otology and Neurotology, 2010, 31, 1293-1299.	1.3	52
89	Lateralization of Interimplant Timing and Level Differences in Children Who Use Bilateral Cochlear Implants. Ear and Hearing, 2010, 31, 441-456.	2.1	52
90	Bilateral Cervical Plexus Block in Simultaneous Cochlear Implants: An Intervention We Won't Adopt. Laryngoscope, 2010, 120, S82-S82.	2.0	0

#	Article	IF	Citations
91	Nerve regeneration in the peripheral nervous system versus the central nervous system and the relevance to speech and hearing after nerve injuries. Journal of Communication Disorders, 2010, 43, 274-285.	1.5	9
92	Recognition of Affective Speech Prosody and Facial Affect in Deaf Children with Unilateral Right Cochlear Implants. Child Neuropsychology, 2009, 15, 136-146.	1.3	96
93	Beamformer Suppression of Cochlear Implant Artifacts in an Electroencephalography Dataset. IEEE Transactions on Biomedical Engineering, 2009, 56, 2851-2857.	4.2	48
94	Soft tissue complications after small incision pediatric cochlear implantation. Laryngoscope, 2009, 119, 980-983.	2.0	66
95	Electrogustometric assessment of taste after otologic surgery in children. Laryngoscope, 2009, 119, 2061-2065.	2.0	20
96	Bilateral simultaneous cochlear implantation in children: Our first 50 cases. Laryngoscope, 2009, 119, 2444-2448.	2.0	45
97	Tinnitus is prevalent in children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 2009, 73, 671-675.	1.0	25
98	Parental and program's decision making in paediatric simultaneous bilateral cochlear implantation: Who says no and why?. International Journal of Pediatric Otorhinolaryngology, 2009, 73, 1325-1328.	1.0	18
99	Vestibular End-Organ and Balance Deficits After Meningitis and Cochlear Implantation in Children Correlate Poorly With Functional Outcome. Otology and Neurotology, 2009, 30, 488-495.	1.3	51
100	Evolution of Cochlear Implant Arrays Result in Changes in Behavioral and Physiological Responses in Children. Otology and Neurotology, 2009, 30, 908-915.	1.3	49
101	Benefits of Short Interimplant Delays in Children Receiving Bilateral Cochlear Implants. Otology and Neurotology, 2009, 30, 319-331.	1.3	118
102	Evidence of Vestibular and Balance Dysfunction in Children With Profound Sensorineural Hearing Loss Using Cochlear Implants. Laryngoscope, 2008, 118, 1814-1823.	2.0	160
103	Effects of stimulus manipulation on electrophysiological responses of pediatric cochlear implant users. Part II: Rate effects. Hearing Research, 2008, 244, 15-24.	2.0	20
104	Effects of stimulus manipulation on electrophysiological responses in pediatric cochlear implant users. Part I: Duration effects. Hearing Research, 2008, 244, 7-14.	2.0	15
105	A Test of Static and Dynamic Balance Function in Children With Cochlear Implants. JAMA Otolaryngology, 2008, 134, 34.	1.2	91
106	Abnormal Timing Delays in Auditory Brainstem Responses Evoked by Bilateral Cochlear Implant Use in Children. Otology and Neurotology, 2008, 29, 193-198.	1.3	66
107	Bilateral cochlear implants should be the standard for children with bilateral sensorineural deafness. Current Opinion in Otolaryngology and Head and Neck Surgery, 2008, 16, 69-74.	1.8	97
108	Cochlear Implants for Children with Severe-to-Profound Hearing Loss. New England Journal of Medicine, 2007, 357, 2380-2387.	27.0	102

#	Article	IF	Citations
109	Binaural processing in children using bilateral cochlear implants. NeuroReport, 2007, 18, 613-617.	1.2	45
110	In Reference toTemporal Bone Imaging inGJB2Deafness. Laryngoscope, 2007, 117, 1127-1129.	2.0	6
111	Incidence and Characteristics of Facial Nerve Stimulation in Children With Cochlear Implants. Laryngoscope, 2006, 116, 1787-1791.	2.0	44
112	Auditory Responses in Cochlear Implant Users With and Without GJB2 Deafness. Laryngoscope, 2006, 116, 317-327.	2.0	41
113	An Evoked Potential Study of the Developmental Time Course of the Auditory Nerve and Brainstem in Children Using Cochlear Implants. Audiology and Neuro-Otology, 2006, 11, 7-23.	1.3	90
114	Atypical cortical responses underlie poor speech perception in children using cochlear implants. NeuroReport, 2005, 16, 2041-2045.	1.2	45
115	Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation. Developmental Psychobiology, 2005, 46, 252-261.	1.6	176
116	Effects of cochlear implant use on the electrically evoked middle latency response in children. Hearing Research, 2005, 204, 78-89.	2.0	52
117	Use of a Graded Profile Analysis to assess cochlear implant candidacy: recent findings. International Congress Series, 2004, 1273, 215-218.	0.2	3
118	Toward a Battery of Behavioral and Objective Measures to Achieve Optimal Cochlear Implant Stimulation Levels in Children. Ear and Hearing, 2004, 25, 447-463.	2.1	116
119	Programming cochlear implant stimulation levels in infants and children with a combination of objective measures. International Journal of Audiology, 2004, 43 Suppl 1, S28-32.	1.7	9
120	Activity-Dependent Developmental Plasticity of the Auditory Brain Stem in Children Who Use Cochlear Implants. Ear and Hearing, 2003, 24, 485-500.	2.1	100
121	Auditory Brain Stem and Midbrain Development after Cochlear Implantation in Children. Annals of Otology, Rhinology and Laryngology, 2002, 111, 32-37.	1.1	22
122	Neural Response Telemetry in 12- to 24-Month-Old Children. Annals of Otology, Rhinology and Laryngology, 2002, 111, 42-48.	1.1	61
123	The role of a graded profile analysis in determining candidacy and outcome for cochlear implantation in children. International Journal of Pediatric Otorhinolaryngology, 1999, 49, 135-142.	1.0	48