Barry W Brook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588365/publications.pdf Version: 2024-02-01

RADDY W RDOOK

#	Article	IF	CITATIONS
1	Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 2011, 478, 378-381.	27.8	1,600
2	Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 2008, 23, 453-460.	8.7	1,507
3	Southeast Asian biodiversity: an impending disaster. Trends in Ecology and Evolution, 2004, 19, 654-660.	8.7	1,225
4	STRENGTH OF EVIDENCE FOR DENSITY DEPENDENCE IN ABUNDANCE TIME SERIES OF 1198 SPECIES. Ecology, 2006, 87, 1445-1451.	3.2	961
5	Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15261-15264.	7.1	958
6	Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 2014, 170, 56-63.	4.1	729
7	Catastrophic extinctions follow deforestation in Singapore. Nature, 2003, 424, 420-423.	27.8	650
8	Biodiversity losses and conservation responses in the Anthropocene. Science, 2017, 356, 270-275.	12.6	586
9	Predictive accuracy of population viability analysis in conservation biology. Nature, 2000, 404, 385-387.	27.8	517
10	Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation, 2006, 133, 42-51.	4.1	480
11	The state and conservation of Southeast Asian biodiversity. Biodiversity and Conservation, 2010, 19, 317-328.	2.6	479
12	Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biology, 2007, 13, 2379-2395.	9.5	430
13	Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 2003, 113, 23-34.	4.1	373
14	Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline. PLoS ONE, 2008, 3, e1636.	2.5	351
15	Minimum viable population size: A meta-analysis of 30 years of published estimates. Biological Conservation, 2007, 139, 159-166.	4.1	349
16	Tropical turmoil: a biodiversity tragedy in progress. Frontiers in Ecology and the Environment, 2009, 7, 79-87.	4.0	334
17	Does Inbreeding and Loss of Genetic Diversity Decrease Disease Resistance?. Conservation Genetics, 2004, 5, 439-448.	1.5	300
18	Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable and Sustainable Energy Reviews, 2017, 76, 1122-1133.	16.4	292

#	Article	IF	CITATIONS
19	Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science, 2015, 349, 602-606.	12.6	274
20	Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre. PLoS ONE, 2013, 8, e57103.	2.5	268
21	Dynamics of range margins for metapopulations under climate change. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1415-1420.	2.6	265
22	The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia. Science, 2012, 335, 1483-1486.	12.6	259
23	Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22352-22357.	7.1	255
24	Forest resilience and tipping points at different spatioâ€ŧemporal scales: approaches and challenges. Journal of Ecology, 2015, 103, 5-15.	4.0	224
25	What are the best correlates of predicted extinction risk?. Biological Conservation, 2004, 118, 513-520.	4.1	219
26	Pragmatic population viability targets in a rapidly changing world. Biological Conservation, 2010, 143, 28-34.	4.1	213
27	Does the terrestrial biosphere have planetary tipping points?. Trends in Ecology and Evolution, 2013, 28, 396-401.	8.7	205
28	Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 2007, 16, 153-163.	2.6	194
29	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	9.5	182
30	Contribution of Inbreeding to Extinction Risk in Threatened Species. Ecology and Society, 2002, 6, .	0.9	177
31	Ecological Correlates of Extinction Proneness in Tropical Butterflies. Conservation Biology, 2004, 18, 1571-1578.	4.7	164
32	PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography, 2017, 40, 1348-1358.	4.5	163
33	The carrying capacity of ecosystems. Global Ecology and Biogeography, 2004, 13, 485-495.	5.8	142
34	Human population reduction is not a quick fix for environmental problems. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16610-16615.	7.1	141
35	iEcology: Harnessing Large Online Resources to Generate Ecological Insights. Trends in Ecology and Evolution, 2020, 35, 630-639.	8.7	129
36	Momentum Drives the Crash: Mass Extinction in the Tropics1. Biotropica, 2006, 38, 302-305.	1.6	126

#	Article	IF	CITATIONS
37	Minimum viable population sizes and global extinction risk are unrelated. Ecology Letters, 2006, 9, 375-382.	6.4	125
38	Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology Letters, 2009, 5, 723-725.	2.3	124
39	Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecology and Evolution, 2015, 5, 1908-1918.	1.9	116
40	A Metaâ€Analysis of the Impact of Anthropogenic Forest Disturbance on Southeast Asia's Biotas. Biotropica, 2009, 41, 103-109.	1.6	111
41	Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography, 2013, 36, 956-964.	4.5	111
42	Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 2016, 7, 10511.	12.8	109
43	Determinants of survival for the northern brown bandicoot under a landscape-scale fire experiment. Journal of Animal Ecology, 2003, 72, 106-115.	2.8	108
44	Critiques of PVA Ask the Wrong Questions: Throwing the Heuristic Baby Out with the Numerical Bath Water. Conservation Biology, 2002, 16, 262-263.	4.7	107
45	What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. Ecological Research, 2002, 17, 59-67.	1.5	106
46	Correlates of extinction proneness in tropical angiosperms. Diversity and Distributions, 2008, 14, 1-10.	4.1	106
47	Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation, 2010, 19, 329-342.	2.6	106
48	Does population viability analysis software predict the behaviour of real populations? A retrospective study on the Lord Howe Island woodhen Tricholimnas sylvestris (Sclater). Biological Conservation, 1997, 82, 119-128.	4.1	103
49	The uncertain blitzkrieg of Pleistocene megafauna. Journal of Biogeography, 2004, 31, 517-523.	3.0	101
50	Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14624-14627.	7.1	98
51	Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .	12.6	98
52	Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature Climate Change, 2013, 3, 899-903.	18.8	96
53	Better forecasts of range dynamics using genetic data. Trends in Ecology and Evolution, 2014, 29, 436-443.	8.7	93
54	Would the Australian megafauna have become extinct if humans had never colonised the continent? Comments on "A review of the evidence for a human role in the extinction of Australian megafauna and an alternative explanation―by S. Wroe and J. Field. Quaternary Science Reviews, 2007, 26, 560-564.	3.0	89

#	Article	IF	CITATIONS
55	Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Materials and Technologies, 2014, 1-2, 8-16.	3.3	89
56	The thetaâ€logistic is unreliable for modelling most census data. Methods in Ecology and Evolution, 2010, 1, 253-262.	5.2	87
57	Examining threats faced by island birds: a population viability analysis on the Capricorn silvereye using long-term data. Journal of Applied Ecology, 1998, 35, 491-503.	4.0	86
58	Revisiting Chamberlin: Multiple Working Hypotheses for the 21st Century. BioScience, 2007, 57, 608-614.	4.9	85
59	Multi-model climate projections for biodiversity risk assessments. , 2011, 21, 3317-3331.		85
60	Limited evidence for the demographic Allee effect from numerous species across taxa. Ecology, 2010, 91, 2151-2161.	3.2	84
61	Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environment International, 2019, 133, 105187.	10.0	83
62	Does the Shoe Fit? Real versus Imagined Ecological Footprints. PLoS Biology, 2013, 11, e1001700.	5.6	78
63	Key role for nuclear energy in global biodiversity conservation. Conservation Biology, 2015, 29, 702-712.	4.7	75
64	Density dependence: an ecological Tower of Babel. Oecologia, 2012, 170, 585-603.	2.0	74
65	Effects of Landâ€Use Change on Community Composition of Tropical Amphibians and Reptiles in Sulawesi, Indonesia. Conservation Biology, 2010, 24, 795-802.	4.7	73
66	Population dynamics can be more important than physiological limits for determining range shifts under climate change. Global Change Biology, 2013, 19, 3224-3237.	9.5	73
67	Feral pig predation threatens the indigenous harvest and local persistence of snake-necked turtles in northern Australia. Biological Conservation, 2006, 133, 379-388.	4.1	72
68	Effect of fire on small mammals: a systematic review. International Journal of Wildland Fire, 2014, 23, 1034.	2.4	72
69	V.1 Causes and Consequences of Species Extinctions. , 2009, , 514-520.		71
70	Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis. Energy Policy, 2013, 56, 418-424.	8.8	71
71	How complex should models be? Comparing correlative and mechanistic range dynamics models. Global Change Biology, 2018, 24, 1357-1370.	9.5	71
72	Current and future threats from non-indigenous animal species in northern Australia: a spotlight on World Heritage Area Kakadu National Park. Wildlife Research, 2007, 34, 419.	1.4	70

#	Article	IF	CITATIONS
73	Comparing predictions of extinction risk using models and subjective judgement. Acta Oecologica, 2004, 26, 67-74.	1.1	66
74	Postcards from the past: charting the landscape-scale conversion of tropical Australian savanna to closed forest during the 20th century. Landscape Ecology, 2006, 21, 1253-1266.	4.2	66
75	Decline in whale shark size and abundance at Ningaloo Reef over the past decade: The world's largest fish is getting smaller. Biological Conservation, 2008, 141, 1894-1905.	4.1	62
76	Brave new green world $\hat{a} \in$ Consequences of a carbon economy for the conservation of Australian biodiversity. Biological Conservation, 2013, 161, 71-90.	4.1	61
77	Quantifying 25 years of diseaseâ€caused declines in Tasmanian devil populations: host density drives spatial pathogen spread. Ecology Letters, 2021, 24, 958-969.	6.4	61
78	Differences and Congruencies between PVA Packages: the Importance of Sex Ratio for Predictions of Extinction Risk. Ecology and Society, 2000, 4, .	0.9	61
79	Does foraging mode influence life history traits? A comparative study of growth, maturation and survival of two species of sympatric snakes from south-eastern Australia. Austral Ecology, 2003, 28, 601-610.	1.5	59
80	Decline and likely extinction of a northern Australian native rodent, the Brush-tailed Rabbit-rat Conilurus penicillatus. Biological Conservation, 2010, 143, 1193-1201.	4.1	59
81	Global zero-carbon energy pathways using viable mixes of nuclear and renewables. Applied Energy, 2015, 143, 451-459.	10.1	59
82	Threat or invasive status in legumes is related to opposite extremes of the same ecological and lifeâ€history attributes. Journal of Ecology, 2008, 96, 869-883.	4.0	58
83	ENDOGENOUS AND EXOGENOUS FACTORS CONTROLLING TEMPORAL ABUNDANCE PATTERNS OF TROPICAL MOSQUITOES. , 2008, 18, 2028-2040.		58
84	Robust estimates of extinction time in the geological record. Quaternary Science Reviews, 2012, 33, 14-19.	3.0	58
85	Environmental and allometric drivers of tree growth rates in a north Australian savanna. Forest Ecology and Management, 2006, 234, 164-180.	3.2	57
86	Strengthening forecasts of climate change impacts with multiâ€model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography, 2012, 35, 4-8.	4.5	57
87	How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies. Energy, 2011, 36, 305-313.	8.8	56
88	Fire frequency matters more than fire size: Testing the pyrodiversity–biodiversity paradigm for at-risk small mammals in an Australian tropical savanna. Biological Conservation, 2015, 186, 337-346.	4.1	56
89	Collectors endanger Australia's most threatened snake, the broad-headed snake Hoplocephalus bungaroides. Oryx, 2002, 36, 170-181.	1.0	55
90	Nest site selection of the house crow (Corvus splendens), an urban invasive bird species in Singapore and implications for its management. Landscape and Urban Planning, 2002, 59, 217-226.	7.5	55

#	Article	IF	CITATIONS
91	Modelling range dynamics under global change: which framework and why?. Methods in Ecology and Evolution, 2015, 6, 247-256.	5.2	55
92	An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere, 2016, 7, e01238.	2.2	55
93	Co-Extinctions of Tropical Butterflies and their Hostplants. Biotropica, 2004, 36, 272-274.	1.6	54
94	Indigenous harvest, exotic pig predation and local persistence of a longâ€lived vertebrate: managing a tropical freshwater turtle for sustainability and conservation. Journal of Applied Ecology, 2008, 45, 52-62.	4.0	52
95	Undesirable aliens: factors determining the distribution of three invasive bird species in Singapore. Journal of Tropical Ecology, 2003, 19, 685-695.	1.1	51
96	Synergies between climate change, extinctions and invasive vertebrates. Wildlife Research, 2008, 35, 249.	1.4	51
97	Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence of an endangered lizard. Global Change Biology, 2012, 18, 2743-2755.	9.5	50
98	Demographic sensitivity and persistence of the threatened white- and orange-bellied frogs of Western Australia. Population Ecology, 2003, 45, 105-114.	1.2	49
99	Comparison of the population viability analysis packages GAPPS, INMAT, RAMAS and VORTEX for the whooping crane (Grus americana). Animal Conservation, 1999, 2, 23-31.	2.9	48
100	How to Rank Journals. PLoS ONE, 2016, 11, e0149852.	2.5	47
101	Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10 000 years of population growth in Australia. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3748-3754.	2.6	46
102	An ecological regime shift resulting from disrupted predator–prey interactions in Holocene Australia. Ecology, 2014, 95, 693-702.	3.2	46
103	Pessimistic and Optimistic Bias in Population Viability Analysis. Conservation Biology, 2000, 14, 564-566.	4.7	45
104	Conservation value of cacao agroforestry for amphibians and reptiles in Southâ€East Asia: combining correlative models with followâ€up field experiments. Journal of Applied Ecology, 2009, 46, 823-832.	4.0	45
105	Ecological and economic benefits to cattle rangelands of restoring an apex predator. Journal of Applied Ecology, 2015, 52, 455-466.	4.0	45
106	Urbanisation reduces the abundance and diversity of airborne microbes - but what does that mean for our health? A systematic review. Science of the Total Environment, 2020, 738, 140337.	8.0	45
107	Rapid megafaunal extinction following human arrival throughout the New World. Quaternary International, 2013, 308-309, 273-277.	1.5	44
108	Endemic predators, invasive prey and native diversity. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 690-694.	2.6	43

#	Article	IF	CITATIONS
109	No need for disease: testing extinction hypotheses for the thylacine using multiâ€species metamodels. Journal of Animal Ecology, 2013, 82, 355-364.	2.8	43
110	Marine extinctions revisited. Fish and Fisheries, 2007, 8, 107-122.	5.3	42
111	Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nature Climate Change, 2016, 6, 909-916.	18.8	42
112	Abundance and Projected Control of Invasive House Crows in Singapore. Journal of Wildlife Management, 2003, 67, 808.	1.8	41
113	Rapid deforestation threatens midâ€elevational endemic birds but climate change is most important at higher elevations. Diversity and Distributions, 2014, 20, 773-785.	4.1	41
114	What caused extinction of the Pleistocene megafauna of Sahul?. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152399.	2.6	41
115	Factors affecting success of conservation translocations of terrestrial vertebrates: A global systematic review. Clobal Ecology and Conservation, 2021, 28, e01630.	2.1	41
116	One equation fits overkill: why allometry underpins both prehistoric and modern body size-biased extinctions. Population Ecology, 2005, 47, 137-141.	1.2	40
117	Extinction risk scales better to generations than to years. Animal Conservation, 2008, 11, 442-451.	2.9	40
118	Deforestation and Avian Extinction on Tropical Landbridge Islands. Conservation Biology, 2010, 24, 1290-1298.	4.7	40
119	Evaluating options for sustainable energy mixes in South Korea using scenario analysis. Energy, 2013, 52, 237-244.	8.8	40
120	Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa, 2006, 30, 163-186.	1.2	39
121	Using dung fungi to interpret decline and extinction ofÂmegaherbivores: problems and solutions. Quaternary Science Reviews, 2015, 110, 107-113.	3.0	39
122	Shifting trends: detecting environmentally mediated regulation in long-lived marine vertebrates using time-series data. Oecologia, 2009, 159, 69-82.	2.0	38
123	Conserving imperiled species: a comparison of the IUCN Red List and U.S. Endangered Species Act. Conservation Letters, 2012, 5, 64-72.	5.7	38
124	Predictors of contraction and expansion of area of occupancy for British birds. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140744.	2.6	38
125	Demographic response of snakeâ€necked turtles correlates with indigenous harvest and feral pig predation in tropical northern Australia. Journal of Animal Ecology, 2007, 76, 1231-1243.	2.8	37
126	The tropical frontier in avian climate impact research. Ibis, 2011, 153, 877-882.	1.9	37

#	Article	IF	CITATIONS
127	50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology and Evolution, 2013, 28, 187-188.	8.7	37
128	Uncertainties in dating constrain model choice for inferring extinction time from fossil records. Quaternary Science Reviews, 2015, 112, 128-137.	3.0	37
129	Population viability analyses on a cycling population: a cautionary tale. Biological Conservation, 2001, 97, 61-69.	4.1	36
130	Disease and the devil: density-dependent epidemiological processes explain historical population fluctuations in the Tasmanian devil. Ecography, 2005, 28, 181-190.	4.5	35
131	Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case. Energy Policy, 2012, 42, 4-8.	8.8	35
132	Is there a Pleistocene archaeological site at Cuddie Springs?. Archaeology in Oceania, 2006, 41, 1-11.	0.7	34
133	Land management affects grass biomass in the Eucalyptus tetrodonta savannas of monsoonal Australia. Austral Ecology, 2007, 32, 446-452.	1.5	34
134	Importance of endogenous feedback controlling the longâ€ŧerm abundance of tropical mosquito species. Population Ecology, 2008, 50, 293-305.	1.2	34
135	Ecology Needs a Convention of Nomenclature. BioScience, 2014, 64, 311-321.	4.9	34
136	Correlations among Extinction Risks Assessed by Different Systems of Threatened Species Categorization. Conservation Biology, 2004, 18, 1624-1635.	4.7	33
137	Conservation Value of Non-Native Banteng in Northern Australia. Conservation Biology, 2006, 20, 1306-1311.	4.7	33
138	Growth and survival of two north Australian relictual tree species, Allosyncarpia ternata (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecological Research, 2007, 22, 228-236.	1.5	33
139	Southeast Asian birds in peril. Auk, 2006, 123, 275.	1.4	32
140	Nuclear power can reduce emissions and maintain a strong economy: Rating Australia's optimal future electricity-generation mix by technologies and policies. Applied Energy, 2014, 136, 712-725.	10.1	32
141	First, do no harm: A systematic review of deforestation spillovers from protected areas. Global Ecology and Conservation, 2019, 18, e00591.	2.1	32
142	Southeast Asian birds in peril. Auk, 2006, 123, 275-277.	1.4	31
143	Geographic range determinants of two commercially important marine molluscs. Diversity and Distributions, 2012, 18, 133-146.	4.1	31
144	Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages. Quaternary Geochronology, 2015, 30, 69-79.	1.4	31

#	Article	IF	CITATIONS
145	Selective hunting of juveniles as a cause of the imperceptible overkill of the Australian Pleistocene megafauna. Alcheringa, 2006, 30, 39-48.	1.2	30
146	Minimum viable population size: not magic, but necessary. Trends in Ecology and Evolution, 2011, 26, 619-620.	8.7	30
147	The SAFE index: using a threshold population target to measure relative species threat. Frontiers in Ecology and the Environment, 2011, 9, 521-525.	4.0	29
148	Spatially explicit spreadsheet modelling for optimising the efficiency of reducing invasive animal density. Methods in Ecology and Evolution, 2010, 1, 53-68.	5.2	28
149	Roost Characteristics of Invasive Mynas in Singapore. Journal of Wildlife Management, 2002, 66, 1118.	1.8	27
150	Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern Australia. Molecular Ecology, 2007, 16, 2998-3008.	3.9	27
151	Monitoring Contrasting Land Management in the Savanna Landscapes of Northern Australia. Environmental Management, 2008, 41, 501-515.	2.7	27
152	A nuclear- to-gas transition in South Korea: Is it environmentally friendly or economically viable?. Energy Policy, 2018, 112, 67-73.	8.8	27
153	Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics. Journal of the Royal Society Interface, 2015, 12, 20141184.	3.4	26
154	Environmental and health impacts of a policy to phase out nuclear power in Sweden. Energy Policy, 2015, 84, 1-10.	8.8	26
155	How secure is the Lord Howe Island Woodhen? A population viability analysis using VORTEX. Pacific Conservation Biology, 1997, 3, 125.	1.0	25
156	Wetland conservation and sustainable use under global change: a tropical Australian case study using magpie geese. Ecography, 2010, 33, 818-825.	4.5	25
157	Longâ€ŧerm breeding phenology shift in royal penguins. Ecology and Evolution, 2012, 2, 1563-1571.	1.9	25
158	How interactions between animal movement and landscape processes modify local range dynamics and extinction risk. Biology Letters, 2014, 10, 20140198.	2.3	25
159	Quaternary Extinctions and Their Link to Climate Change. , 2012, , 179-198.		24
160	Geographic variation in the ecological effects of extinction of Australia's Pleistocene megafauna. Ecography, 2016, 39, 109-116.	4.5	24
161	Predicting the Timing and Magnitude of Tropical Mosquito Population Peaks for Maximizing Control Efficiency. PLoS Neglected Tropical Diseases, 2009, 3, e385.	3.0	24
162	Persistence of lowland rainforest birds in a recently logged area in central Java. Bird Conservation International, 2005, 15, .	1.3	23

#	Article	IF	CITATIONS
163	Booming during a bust: Asynchronous population responses of arid zone lizards to climatic variables. Acta Oecologica, 2012, 40, 51-61.	1.1	23
164	Strength of density feedback in census data increases from slow to fast life histories. Ecology and Evolution, 2012, 2, 1922-1934.	1.9	23
165	Novel coupling of individualâ€based epidemiological and demographic models predicts realistic dynamics of tuberculosis in alien buffalo. Journal of Applied Ecology, 2012, 49, 268-277.	4.0	23
166	Ecologically realistic estimates of maximum population growth using informed <scp>B</scp> ayesian priors. Methods in Ecology and Evolution, 2013, 4, 34-44.	5.2	23
167	Training future generations to deliver evidenceâ€based conservation and ecosystem management. Ecological Solutions and Evidence, 2021, 2, e12032.	2.0	23
168	Managing the longâ€ŧerm persistence of a rare cockatoo under climate change. Journal of Applied Ecology, 2012, 49, 785-794.	4.0	22
169	Processâ€explicit models reveal pathway to extinction for woolly mammoth using patternâ€oriented validation. Ecology Letters, 2022, 25, 125-137.	6.4	22
170	Sustainable harvest regimes for magpie geese (Anseranas semipalmata) under spatial and temporal heterogeneity. Wildlife Research, 2005, 32, 459.	1.4	21
171	INCORPORATING KNOWN SOURCES OF UNCERTAINTY TO DETERMINE PRECAUTIONARY HARVESTS OF SALTWATER CROCODILES. , 2006, 16, 1436-1448.		21
172	Kyoto: doing our best is no longer enough. Nature, 2007, 450, 478-478.	27.8	21
173	Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on Effective Forest Management and Greenhouse Gas Mitigation. PLoS ONE, 2012, 7, e43846.	2.5	21
174	Effects of prey metapopulation structure on the viability of blackâ€ f ooted ferrets in plagueâ€impacted landscapes: a metamodelling approach. Journal of Applied Ecology, 2014, 51, 735-745.	4.0	21
175	Tick exposure and extreme climate events impact survival and threaten the persistence of a longâ€lived lizard. Journal of Animal Ecology, 2016, 85, 598-610.	2.8	21
176	Economic and environmental costs of replacing nuclear fission with solar and wind energy in Sweden. Energy Policy, 2018, 112, 56-66.	8.8	21
177	Rarity bites. Nature, 2006, 444, 555-556.	27.8	20
178	Artificial nest predation rates vary among habitats in the Australian monsoon tropics. Ecological Research, 2008, 23, 519-527.	1.5	19
179	Decoupling of component and ensemble density feedbacks in birds and mammals. Ecology, 2012, 93, 1728-1740.	3.2	19
180	Lack of chronological support for stepwise prehuman extinctions of Australian megafauna. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3368.	7.1	19

#	Article	IF	CITATIONS
181	Extinction debt from climate change for frogs in the wet tropics. Biology Letters, 2016, 12, 20160236.	2.3	19
182	Beyond Singapore: Hong Kong and Asian biodiversity. Trends in Ecology and Evolution, 2005, 20, 281-282.	8.7	18
183	Dangers of Sensationalizing Conservation Biology. Conservation Biology, 2007, 21, 570-571.	4.7	18
184	Modelling to forestall extinction of Australian tropical birds. Journal Fur Ornithologie, 2007, 148, 311-320.	1.2	18
185	Quantifying the Drivers of Larval Density Patterns in Two Tropical Mosquito Species to Maximize Control Efficiency. Environmental Entomology, 2009, 38, 1013-1021.	1.4	18
186	Experimental evidence for density-dependent responses to mortality of snake-necked turtles. Oecologia, 2009, 159, 271-281.	2.0	18
187	European rabbit survival and recruitment are linked to epidemiological and environmental conditions in their exotic range. Austral Ecology, 2012, 37, 945-957.	1.5	18
188	Model-based adaptive spatial sampling for occurrence map construction. Statistics and Computing, 2013, 23, 29-42.	1.5	18
189	Fire impacts recruitment more than survival of smallâ€mammals in a tropical savanna. Ecosphere, 2015, 6, 1-22.	2.2	18
190	Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data. PLoS ONE, 2015, 10, e0124074.	2.5	18
191	Beyond wind: furthering development of clean energy in South Australia. Transactions of the Royal Society of South Australia, 2015, 139, 57-82.	0.4	18
192	Forecasting future global food demand: A systematic review and meta-analysis of model complexity. Environment International, 2018, 120, 93-103.	10.0	18
193	And Then There Were None?. Science, 2010, 327, 420-422.	12.6	17
194	Global warming tugs at trophic interactions. Journal of Animal Ecology, 2009, 78, 1-3.	2.8	16
195	Finding needles (or ants) in haystacks: predicting locations of invasive organisms to inform eradication and containment. Ecological Applications, 2010, 20, 1217-1227.	3.8	16
196	A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates. Scientific Data, 2016, 3, 160053.	5.3	16
197	Silver Buckshot or Bullet: Is a Future "Energy Mix―Necessary?. Sustainability, 2018, 10, 302.	3.2	16
198	Climate Change Enhances the Potential Impact of Infectious Disease and Harvest on Tropical Waterfowl. Biotropica, 2009, 41, 414-423.	1.6	15

#	Article	IF	CITATIONS
199	Tracking shifting range margins using geographical centroids of metapopulations weighted by population density. Ecological Modelling, 2013, 269, 61-69.	2.5	15
200	Sensitivity Analysis of Range Dynamics Models (SARDM): Quantifying the influence of parameter uncertainty on forecasts of extinction risk from global change. Environmental Modelling and Software, 2016, 83, 193-197.	4.5	15
201	How much can nuclear energy do about global warming?. International Journal of Global Energy Issues, 2017, 40, 43.	0.4	15
202	Economic Feasibility of Energy Supply by Small Modular Nuclear Reactors on Small Islands: Case Studies of Jeju, Tasmania and Tenerife. Energies, 2018, 11, 2587.	3.1	15
203	The conservation biologist's toolbox – principles for the design and analysis of conservation studies. , 2010, , 313-340.		15
204	Plausible bounds for maximum rate of increase in magpie geese (Anseranas semipalmata): implications for harvest. Wildlife Research, 2005, 32, 465.	1.4	14
205	How to monitor elusive lizards: comparison of capture–recapture methods on giant day geckos (<i>Gekkonidae</i> , <i>Phelsuma madagascariensis grandis</i>) in the Masoala rainforest exhibit, Zurich Zoo. Ecological Research, 2009, 24, 345-353.	1.5	14
206	Using plant distributions to predict the current and future range of a rare lizard. Diversity and Distributions, 2013, 19, 1125-1137.	4.1	14
207	Egress! How technophilia can reinforce biophilia to improve ecological restoration. Restoration Ecology, 2016, 24, 843-847.	2.9	14
208	A validated ensemble method for multinomial land-cover classification. Ecological Informatics, 2020, 56, 101065.	5.2	14
209	Accidents alter animal fitness landscapes. Ecology Letters, 2021, 24, 920-934.	6.4	14
210	poems: R package for simulating species' range dynamics using patternâ€oriented validation. Methods in Ecology and Evolution, 2021, 12, 2364-2371.	5.2	14
211	Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate. PLoS ONE, 2012, 7, e46554.	2.5	14
212	Letters to the editor about the contents of past issues and comment on topics of current concern toFrontiersreaders. Frontiers in Ecology and the Environment, 2006, 4, 235-237.	4.0	14
213	Threat and response: A decade of decline in a regionally endangered rainforest palm affected by fire and introduced animals. Biological Conservation, 2006, 132, 362-375.	4.1	13
214	Managing an Endangered Asian Bovid in an Australian National Park: The Role and Limitations of Ecological-Economic Models in Decision-Making. Environmental Management, 2006, 38, 463-469.	2.7	13
215	South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs. Energy Policy, 2014, 74, 569-578.	8.8	13
216	A fast reâ€sampling method for using reliability ratings of sightings with extinctionâ€date estimators. Ecology, 2019, 100, e02787.	3.2	13

#	Article	IF	CITATIONS
217	Parsimonious model selection using information theory: a modified selection rule. Ecology, 2021, 102, e03475.	3.2	13
218	Australasian bird invasions: accidents of history?. Ornithological Science, 2004, 3, 33-42.	0.5	12
219	ECOLOGICALâ€ECONOMIC MODELS OF SUSTAINABLE HARVEST FOR AN ENDANGERED BUT EXOTIC MEGAHERBIVORE IN NORTHERN AUSTRALIA. Natural Resource Modelling, 2007, 20, 129-156.	2.0	12
220	The Ecological Footprint Remains a Misleading Metric of Global Sustainability. PLoS Biology, 2013, 11, e1001702.	5.6	12
221	Forecasts of habitat suitability improve habitat corridor efficacy in rapidly changing environments. Diversity and Distributions, 2014, 20, 1044-1057.	4.1	12
222	Obliquityâ€driven expansion of North Atlantic sea ice during the last glacial. Geophysical Research Letters, 2015, 42, 10,382.	4.0	12
223	Look Down to See What's Up: A Systematic Overview of Treefall Dynamics in Forests. Forests, 2017, 8, 123.	2.1	12
224	Nature's untold stories: an overview on the availability and type of on-line data on long-term biodiversity monitoring. Biodiversity and Conservation, 2018, 27, 2971-2987.	2.6	12
225	Habitat suitability, live abundance and their link to road mortality of Tasmanian wildlife. Wildlife Research, 2019, 46, 236.	1.4	12
226	Multiscale modelling of the drivers of rainforest boundary dynamics in Kakadu National Park, northern Australia. Diversity and Distributions, 2007, 13, 680-691.	4.1	11
227	Fragile Southeast Asian biotas. Biological Conservation, 2008, 141, 883-884.	4.1	11
228	Flooding Policy Makers with Evidence to Save Forests. Ambio, 2009, 38, 125-126.	5.5	11
229	Relative need for conservation assessments of vascular plant species among ecoregions. Journal of Biogeography, 2011, 38, 55-68.	3.0	11
230	50/500 rules need upward revision to 100/1000 – Response to Franklin et al Biological Conservation, 2014, 176, 286.	4.1	11
231	Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not leakage mitigation. Biological Conservation, 2020, 248, 108673.	4.1	11
232	Drivers of increasing global crop production: A decomposition analysis. Environmental Research Letters, 2020, 15, 0940b6.	5.2	11
233	Dynamics and predicted distribution of an irrupting â€~sleeper' population: fallow deer in Tasmania. Biological Invasions, 2022, 24, 1131-1147.	2.4	11
234	The Australian National Rabbit Database: 50Âyr of population monitoring of an invasive species. Ecology, 2019, 100, e02750.	3.2	10

#	Article	IF	CITATIONS
235	Ecosystem-Based Tsunami Mitigation for Tropical Biodiversity Hotspots. Trends in Ecology and Evolution, 2020, 35, 96-100.	8.7	10
236	Fertility partially drives the relative success of two introduced bovines (Bubalus bubalis and Bos) Tj ETQq0 0 0 rg	BT /Qverlo	ock _g 10 Tf 50 7
237	Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals. PLoS ONE, 2014, 9, e91536.	2.5	9
238	The case for a near-term commercial demonstration of the Integral Fast Reactor. Sustainable Materials and Technologies, 2015, 3, 2-6.	3.3	9
239	Pattern, process, inference and prediction in extinction biology. Biology Letters, 2017, 13, 20160828.	2.3	9
240	Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits. Journal of Animal Ecology, 2018, 87, 1418-1428.	2.8	9
241	Identifying island safe havens to prevent the extinction of the World's largest lizard from global warming. Ecology and Evolution, 2020, 10, 10492-10507.	1.9	9
242	Changes in autumn arrival of long-distance migratory birds in Southeast Asia. Climate Research, 2013, 57, 133-141.	1.1	9
243	Modelling strategies for the management of the critically endangered Carpentarian rock-rat (Zyzomys) Tj ETQq1	1 0.7843 7.8	514 ggBT /Ove
244	How will climate change affect plant—herbivore interactions? A tropical waterbird case study. Emu, 2009, 109, 126-134.	0.6	8
245	Satellite telemetry and seasonal movements of Magpie Geese (Anseranas semipalmata) in tropical northern Australia. Emu, 2010, 110, 160-164.	0.6	8
246	The influence of non-climate predictors at local and landscape resolutions depends on the autecology of the species. Austral Ecology, 2014, 39, 710-721.	1.5	8
247	Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates. EPJ Nuclear Sciences & Technologies, 2015, 1, 3.	0.7	8
248	Empirical tests of harvestâ€induced bodyâ€size evolution along a geographic gradient in <scp>A</scp> ustralian macropods. Journal of Animal Ecology, 2015, 84, 299-309.	2.8	8
249	Targeting season and age for optimizing control of invasive rabbits. Journal of Wildlife Management, 2016, 80, 990-999.	1.8	8
250	Implications of Australia's Population Policy for Future Greenhouse Gas Emissions Targets. Asia and the Pacific Policy Studies, 2016, 3, 249-265.	1.5	8
251	Deficiencies in estimating the extinction date of the thylacine with mixed certainty data. Conservation Biology, 2018, 32, 1195-1197.	4.7	8
252	Body size and growth in tropical small mammals: examining variation using non-linear mixed effects models. Journal of Zoology, 2005, 267, 211.	1.7	7

#	Article	IF	CITATIONS
253	Methods for Determining Viability of Wildlife Populations in Large Landscapes. , 2009, , 449-471.		7
254	Conservation management and sustainable harvest quotas are sensitive to choice of climate modelling approach for two marine gastropods. Diversity and Distributions, 2013, 19, 1299-1312.	4.1	7
255	Energy research within the UNFCCC: a proposal to guard against ongoing climate-deadlock. Climate Policy, 2016, 16, 803-813.	5.1	7
256	Ravens exploit wildlife roadkill and agricultural landscapes but do not affect songbird assemblages. Emu, 2020, 120, 11-21.	0.6	7
257	Bioregionalization approaches for conservation: methods, biases, and their implications for Australian biodiversity. Biodiversity and Conservation, 2020, 29, 1-17.	2.6	7
258	The Patterns and Causes of Dermatitis in Terrestrial and Semi-Aquatic Mammalian Wildlife. Animals, 2021, 11, 1691.	2.3	7
259	Too hot for the devil? Did climate change cause the midâ€Holocene extinction of the Tasmanian devil <i>Sarcophilus harrisii</i> from mainland Australia?. Ecography, 2022, 2022, .	4.5	7
260	Can Morphometrics Predict Sex in Varanids?. Journal of Herpetology, 2007, 41, 133-140.	0.5	6
261	An aggregative response of the tropical Australian magpie goose (<i>Anseranas semipalmata</i>) to seasonal floodplains. Journal of Tropical Ecology, 2011, 27, 171-180.	1.1	6
262	Scale dependency of metapopulation models used to predict climate change impacts on small mammals. Ecography, 2013, 36, 832-841.	4.5	6
263	Trophic rewilding of native extirpated predators on Bass Strait Islands could benefit woodland birds. Emu, 2020, 120, 260-262.	0.6	6
264	Putative extinction of two sawfish species in Mexico and the United States. Neotropical Ichthyology, 2009, 7, 508-512.	1.0	5
265	Specialist resources are key to improving small mammal distribution models. Austral Ecology, 2012, 37, 216-226.	1.5	5
266	Rainfall and temperature variation does not explain arid species diversity in outback Australia. Research and Reports in Biodiversity Studies, 0, , 1.	0.0	5
267	A flexible tool to prioritize areas for conservation combining landscape units, measures of biodiversity, and threats. Ecosphere, 2019, 10, e02859.	2.2	5
268	Missing the wood for the trees? New ideas on defining forests and forest degradation. Rethinking Ecology, 0, 1, 15-24.	0.0	5
269	Better SAFE than sorry. Frontiers in Ecology and the Environment, 2011, 9, 487-488.	4.0	4
270	Strange bedfellows? Techno-fixes to solve the big conservation issues in southern Asia. Biological Conservation, 2012, 151, 7-10.	4.1	4

#	Article	IF	CITATIONS
271	Experimental comparison of aerial larvicides and habitat modification for controlling disease arrying <i>Aedes vigilax</i> mosquitoes. Pest Management Science, 2012, 68, 709-717.	3.4	4
272	Evidence for a broad-scale decline in giant Australian cuttlefish (Sepia apama) abundance from non-targeted survey data. Marine and Freshwater Research, 2015, 66, 692.	1.3	4
273	Innovations and limits in methods of forecasting global environmental change. Basic and Applied Ecology, 2016, 17, 565-575.	2.7	4
274	Impact of intense disturbance on the structure and composition of wet-eucalypt forests: A case study from the Tasmanian 2016 wildfires. PLoS ONE, 2018, 13, e0200905.	2.5	4
275	Roadkill islands: Carnivore extinction shifts seasonal use of roadside carrion by generalist avian scavenger. Journal of Animal Ecology, 2021, 90, 2268-2276.	2.8	4
276	Nuclear energy and bio energy carbon capture and storage, keys for obtaining 1.5°C mean surface temperature limit. International Journal of Global Energy Issues, 2017, 40, 240.	0.4	3
277	Analyzing linear spatial features in ecology. Ecology, 2018, 99, 1490-1497.	3.2	3
278	Characterizing the spatio-temporal threats, conservation hotspots and conservation gaps for the most extinction-prone bird family (Aves: Rallidae). Royal Society Open Science, 2021, 8, 210262.	2.4	3
279	The state and conservation of Southeast Asian biodiversity. Topics in Biodiversity and Conservation, 2009, , 5-16.	1.0	3
280	Large Estimates of Minimum Viable Population Sizes. Conservation Biology, 2004, 18, 1178-1179.	4.7	2
281	Population Ecology: First Principles. Austral Ecology, 2004, 29, 684-685.	1.5	2
282	Homage to an Avant-Garde Conservation Leader, Navjot Sodhi. Conservation Biology, 2011, 25, 1056-1058.	4.7	2
283	Genetic structure of introduced swamp buffalo subpopulations in tropical Australia. Austral Ecology, 2013, 38, 46-56.	1.5	2
284	Clarity and Precision of Language Are a Necessary Route in Ecology. BioScience, 2014, 64, 373-374.	4.9	2
285	Reply to O'Neill et al. and O'Sullivan: Fertility reduction will help, but only in the long term. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E508-E509.	7.1	2
286	Emigration is costly, but immigration has benefits in humanâ€altered landscapes. Functional Ecology, 2016, 30, 1478-1479.	3.6	2
287	Importance of the Local Environment on Nutrient Cycling and Litter Decomposition in a Tall Eucalypt Forest. Forests, 2019, 10, 340.	2.1	2
288	Value-added diagnostics for the assessment and validation of integrated assessment models. Renewable and Sustainable Energy Reviews, 2021, 152, 111605.	16.4	2

#	Article	IF	CITATIONS
289	Evaluating scat surveys as a tool for population and community assessments. Wildlife Research, 2021, ,	1.4	2

290 Modelling strategies for the management of the critically endangered Carpentarian rock-rat (Zyzomys) Tj ETQq0 0 9, gBT /Overlock 10 T

291	Response to Hau : Beyond Singapore: Hong Kong and Asian biodiversity. Trends in Ecology and Evolution, 2005, 20, 282-283.	8.7	1
292	Nuclear power: yes or no?. Physics World, 2010, 23, 24-25.	0.0	1
293	Survival estimation in a longâ€lived monitor lizard: radioâ€tracking of <i>Varanus mertensi</i> . Population Ecology, 2010, 52, 243-247.	1.2	1
294	Using climate variables to predict small mammal occurrence in hot, dry environments. Landscape Ecology, 2013, 28, 741-753.	4.2	1
295	Closing the Cycle: How South Australia and Asia Can Benefit from Reâ€inventing Used Nuclear Fuel Management. Asia and the Pacific Policy Studies, 2017, 4, 166-175.	1.5	1
296	A practical method for creating a digital topographic surface for ecological plots using ground-based measurements. Landscape Ecology, 2018, 33, 9-18.	4.2	1
297	Astroâ€ecology? Shifting the interdisciplinary collaboration paradigm. Ecology and Evolution, 2018, 8, 9586-9589.	1.9	1
298	At the crossroads: An uncertain future facing the electricityâ€generation sector in South Korea. Asia and the Pacific Policy Studies, 2018, 5, 522-532.	1.5	1
299	Hot, unpredictable weather interacts with land use to restrict the distribution of the Yellow-tailed Black-Cockatoo. Emu, 2021, 121, 323-332.	0.6	1
300	Is the Carpentarian Rock-rat Zyzomys palatalis critically endangered?. Pacific Conservation Biology, 2006, 12, 134.	1.0	1
301	Does foraging mode influence life history traits? A comparative study of growth, maturation and survival of two species of sympatric snakes from south-eastern Australia. Austral Ecology, 2003, 28, 601-610.	1.5	1
302	Roughing it: terrain is crucial in identifying novel translocation sites for the vulnerable brush-tailed rock-wallaby (Petrogale pencillata). Royal Society Open Science, 2020, 7, 201603.	2.4	1
303	Spatial pattern analysis of lineâ€segment data in ecology. Ecology, 2022, 103, e03597.	3.2	1
304	Co-Extinctions of Tropical Butterflies and their Hostplants1. Biotropica, 2004, 36, 272.	1.6	0
305	Large Estimates of Minimum Viable Population Sizes. Conservation Biology, 2004, 18, 1179-1179.	4.7	0
306	Tropical Conservation Biology: response to Lugo's tendentious review. Environmental Conservation, 2009, 36, 11.	1.3	0

#	Article	IF	CITATIONS
307	<i>Climate Change Biology</i> . By LeeÂHannah. Academic Press. Amsterdam and Boston (Massachusetts): Elsevier. \$59.95 (paper). xii + 402 p.; ill.; index. ISBN: 978â€0â€12â€374182â€0. 2011 Quarterly Review of Biolo 2011, 86, 341-341.	og y,1	0
308	Use fast reactors to burn plutonium. Nature, 2012, 486, 323-323.	27.8	0
309	<i>The Woodhen: A Flightless Island Bird Defying Extinction</i> . By Clifford B. Frith. Collingwood (Australia): CSIRO Publishing. AU \$59.95. xiv + 225 p.; ill.; index. ISBN: 978-0-643-10870-7. 2013 Quarterly Review of Biology, 2014, 89, 406-407.	0.1	0
310	Conservation. Second Edition. By Clive Hambler and Susan M. Canney. Cambridge and New York: Cambridge University Press. \$45.00 (paper). x + 416 p. + 22 pl.; ill.; index to species names and index. ISBN: 978-0-521-18168-6. 2013 Quarterly Review of Biology, 2014, 89, 387-387.	0.1	0
311	Fire frequency is relatively more important than fire size — A reply to Russell-Smith et al. Biological Conservation, 2015, 192, 478.	4.1	0
312	Hot topics in biodiversity and climate change research. F1000Research, 2015, 4, 928.	1.6	0
313	Improving performance and transferability of small mammal species distribution models. Transactions of the Royal Society of South Australia, 2018, 142, 143-161.	0.4	0
314	Why tropical island endemics are acutely susceptible to global change. Topics in Biodiversity and Conservation, 2008, , 17-30.	1.0	0