Barry W Brook

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3588365/publications.pdf
Version: 2024-02-01

$1 \quad$ Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 2011, 478, 378-381. 13.7
1,6002 Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 2008, 23,
3 Southeast Asian biodiversity: an impending disaster. Trends in Ecology and Evolution, 2004, 19, 654-660. 4.2
STRENGTH OF EVIDENCE FOR DENSITY DEPENDENCE IN ABUNDANCE TIME SERIES OF 1198 SPECIES. Ecology, 2006, 87, 1445-1451.
6 Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 2014, 170, 56-63.
$9 \quad$ Predictive accuracy of population viability analysis in conservation biology. Nature, 2000, 404, 385-387. 13.7

10 Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation, 2006, 133, 42-51.
1.9
The state and conservation of Southeast Asian biodiversity. Biodiversity and Conservation, 2010, 19,
317-328.

Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biology, 2007, 13, 2379-2395.
4.2

430
12
$1.2 \quad 479$
Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates.
Biological Conservation, 2003, 113, 23-34.
$1.9 \quad 373$

14 Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline. PLoS ONE, 2008, 3, el636.
1.1

351

15 Minimum viable population size: A meta-analysis of 30 years of published estimates. Biological
1.9

349
Conservation, 2007, 139, 159-166.

Tropical turmoil: a biodiversity tragedy in progress. Frontiers in Ecology and the Environment, 2009, 7, 79-87.
19 Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science, 2015, 349,
$602-606$.
$6.0 \quad 274$

20 Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan
1.1

268
Biodiversity Epicentre. PLoS ONE, 2013, 8, e57103.
Dynamics of range margins for metapopulations under climate change. Proceedings of the Royal
Society B: Biological Sciences, 2009, 276, 1415-1420.
1.2

265

22 The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia. Science, 2012, 335, 1483-1486.
6.0

259

Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proceedings of the
National Academy of Sciences of the United States of America, 2009, 106, 22352-22357.

Forest resilience and tipping points at different spatioâ€temporal scales: approaches and challenges.
1.9

224

25 What are the best correlates of predicted extinction risk?. Biological Conservation, 2004, 118, 513-520.
1.9

Pragmatic population viability targets in a rapidly changing world. Biological Conservation, 2010, 143, 28-34.
1.9

213

27	Does the terrestrial biosphere have planetary tipping points?. Trends in Ecology and Evolution, 2013, 28, 396-401.	4.2	205
28	Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 2007, 16, 153-163.	1.2	194
29	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	4.2	182
30	Contribution of Inbreeding to Extinction Risk in Threatened Species. Ecology and Society, 2002, 6, .	0.9	177
31	Ecological Correlates of Extinction Proneness in Tropical Butterflies. Conservation Biology, 2004, 18, 1571-1578.	2.4	164

32 PaleoView: a tool for generating continuous climate projections spanning the last 21000 years at
2.1

163 regional and global scales. Ecography, 2017, 40, 1348-1358.

16

33 The carrying capacity of ecosystems. Global Ecology and Biogeography, 2004, 13, 485-495.
2.7

142

[^0]4.2

129

37	Minimum viable population sizes and global extinction risk are unrelated. Ecology Letters, 2006, 9, 375-382.	3.0	125
38	Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology Letters, 2009, 5, 723-725.	1.0	124
39	Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecology and Evolution, 2015, 5, 1908-1918.	0.8	116
40	A Metaâ€Analysis of the Impact of Anthropogenic Forest Disturbance on Southeast Asia's Biotas. Biotropica, 2009, 41, 103-109.	0.8	111
41	Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography, 2013, 36, 956-964.	2.1	111
42	Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 2016, 7, 10511.	5.8	109
43	Determinants of survival for the northern brown bandicoot under a landscape-scale fire experiment. Journal of Animal Ecology, 2003, 72, 106-115.	1.3	108
44	Critiques of PVA Ask the Wrong Questions: Throwing the Heuristic Baby Out with the Numerical Bath Water. Conservation Biology, 2002, 16, 262-263.	2.4	107
45	What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. Ecological Research, 2002, 17, 59-67.	0.7	106
46	Correlates of extinction proneness in tropical angiosperms. Diversity and Distributions, 2008, 14, 1-10.	1.9	106
47	Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation, 2010, 19, 329-342.	1.2	106
48	Does population viability analysis software predict the behaviour of real populations? A retrospective study on the Lord Howe Island woodhen Tricholimnas sylvestris (Sclater). Biological Conservation, 1997, 82, 119-128.	1.9	103
49	The uncertain blitzkrieg of Pleistocene megafauna. Journal of Biogeography, 2004, 31, 517-523.	1.4	101

Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14624-14627.
$\begin{array}{lll}51 & \text { Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, . } & 9.0\end{array}$

Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature

Better forecasts of range dynamics using genetic data. Trends in Ecology and Evolution, 2014, 29,
436-443.
4.2
55 Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Materials and
Technologies, 2014, 1-2, 8-16.

The thetaâ€logistic is unreliable for modelling most census data. Methods in Ecology and Evolution, 2010, 1, 253-262.
2.2

87
4.8

83

62 Does the Shoe Fit? Real versus Imagined Ecological Footprints. PLoS Biology, 2013, 11, el001700.
2.6

78

63 | Key role for nuclear energy in global biodiversity conservation. Conservation Biology, 2015, 29, |
| :--- |
| $702-712$. |

$64 \quad$ Density dependence: an ecological Tower of Babel. Oecologia, 2012, 170, 585-603.

$65 \quad$| Effects of Landâ€Use Change on Community Composition of Tropical Amphibians and Reptiles in |
| :--- |
| Sulawesi, Indonesia. Conservation Biology, 2010, 24, 795-802. |

Population dynamics can be more important than physiological limits for determining range shifts under climate change. Global Change Biology, 2013, 19, 3224-3237.
4.2

73

Feral pig predation threatens the indigenous harvest and local persistence of snake-necked turtles in northern Australia. Biological Conservation, 2006, 133, 379-388.

Effect of fire on small mammals: a systematic review. International Journal of Wildland Fire, 2014, 23,
1.0

72

69 V. 1 Causes and Consequences of Species Extinctions. , 2009, , 514-520.
71

73 Comparing predictions of extinction risk using models and subjective judgement. Acta Oecologica,
$2004,26,67-74$.

Postcards from the past: charting the landscape-scale conversion of tropical Australian savanna to closed forest during the 20th century. Landscape Ecology, 2006, 21, 1253-1266.

Decline in whale shark size and abundance at Ningaloo Reef over the past decade: The worldâ $€^{\mathrm{TM}}$ s largest fish is getting smaller. Biological Conservation, 2008, 141, 1894-1905.

Brave new green world â€" Consequences of a carbon economy for the conservation of Australian biodiversity. Biological Conservation, 2013, 161, 71-90.

Quantifying 25 years of diseaseâ€caused declines in Tasmanian devil populations: host density drives spatial pathogen spread. Ecology Letters, 2021, 24, 958-969.
3.0

Differences and Congruencies between PVA Packages: the Importance of Sex Ratio for Predictions of
Extinction Risk. Ecology and Society, 2000, 4, .
0.9

Does foraging mode influence life history traits? A comparative study of growth, maturation and
79 survival of two species of sympatric snakes from south-eastern Australia. Austral Ecology, 2003, 28,
601-610.

80 Decline and likely extinction of a northern Australian native rodent, the Brush-tailed Rabbit-rat
Conilurus penicillatus. Biological Conservation, 2010, 143, 1193-1201.

Global zero-carbon energy pathways using viable mixes of nuclear and renewables. Applied Energy,
2015, 143, 451-459.

Threat or invasive status in legumes is related to opposite extremes of the same ecological and
lifeâ€history attributes. Journal of Ecology, 2008, 96, 869-883.

> ENDOGENOUS AND EXOGENOUS FACTORS CONTROLLING TEMPORAL ABUNDANCE PATTERNS OF TROPICAL

MOSQUITOES. , 2008, 18, 2028-2040.

Robust estimates of extinction time in the geological record. Quaternary Science Reviews, 2012, 33,
14-19.

Environmental and allometric drivers of tree growth rates in a north Australian savanna. Forest
Ecology and Management, 2006, 234, 164-180.

Strengthening forecasts of climate change impacts with multiâ€model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography, 2012, 35, 4-8.

How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies. Energy, 2011, 36, 305-313.

Fire frequency matters more than fire size: Testing the pyrodiversityâ " $^{\prime \prime}$ biodiversity paradigm for at-risk small mammals in an Australian tropical savanna. Biological Conservation, 2015, 186, 337-346.
1.9

56

Collectors endanger Australia's most threatened snake, the broad-headed snake Hoplocephalus
bungaroides. Oryx, 2002, 36, 170-181.
0.5

Nest site selection of the house crow (Corvus splendens), an urban invasive bird species in Singapore
and implications for its management. Landscape and Urban Planning, 2002, 59, 217-226.

An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere,

Indigenous harvest, exotic pig predation and local persistence of a longâ€lived vertebrate: managing a
94 tropical freshwater turtle for sustainability and conservation. Journal of Applied Ecology, 2008, 45,
95 Undesirable aliens: factors determining the distribution of three invasive bird species in Singapore. Journal of Tropical Ecology, 2003, 19, 685-695.0.5

Synergies between climate change, extinctions and invasive vertebrates. Wildlife Research, 2008, 35, 249.Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence
Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10000 years of
population growth in Australia. Proceedings of the Royal Society B: Biological Sciences, 2011, 278,
$3748-3754$.102 An ecological regime shift resulting from disrupted predatorâ€"prey interactions in Holocene
1.5
103 Pessimistic and Optimistic Bias in Population Viability Analysis. Conservation Biology, 2000, 14, 564-566. 45

Conservation value of cacao agroforestry for amphibians and reptiles in Southâ€East Asia: combining correlative models with followâ€up field experiments. Journal of Applied Ecology, 2009, 46, 823-832.
No need for disease: testing extinction hypotheses for the thylacine using multiâ€species metamodels.Journal of Animal Ecology, 2013, 82, 355-364.1.3110 Marine extinctions revisited. Fish and Fisheries, 2007, 8, 107-122.2.7
111 Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nature Climate 8.1 Change, 2016, 6, 909-916.4342Abundance and Projected Control of Invasive House Crows in Singapore. Journal of WildlifeManagement, 2003, 67, 808.
Rapid deforestation threatens midâ€elevational endemic birds but climate change is most important at
higher elevations. Diversity and Distributions, 2014, 20, 773-785. 1.9What caused extinction of the Pleistocene megafauna of Sahul?. Proceedings of the Royal Society B:Biological Sciences, 2016, 283, 20152399.1.2
Factors affecting success of conservation translocations of terrestrial vertebrates: A globalsystematic review. Global Ecology and Conservation, 2021, 28, e01630.11One equation fits overkill: why allometry underpins both prehistoric and modern body size-biasedextinctions. Population Ecology, 2005, 47, 137-141.
0.7 40
117 Extinction risk scales better to generations than to years. Animal Conservation, 2008, 11, 442-451. 1.5 40Deforestation and Avian Extinction on Tropical Landbridge Islands. Conservation Biology, 2010, 24,1290-1298.
Evaluating options for sustainable energy mixes in South Korea using scenario analysis. Energy, 2013,
4.5 40
119 52, 237-244.
120 Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa, 2006, 30, 163-186.0.539
Using dung fungi to interpret decline and extinction ofÂmegaherbivores: problems and solutions.
1.439
Quaternary Science Reviews, 2015, 110, 107-113.Shifting trends: detecting environmentally mediated regulation in long-lived marine vertebrates usingtime-series data. Oecologia, 2009, 159, 69-82.Conserving imperiled species: a comparison of the IUCN Red List and U.S. Endangered Species Act.2.838
Conservation Letters, 2012, 5, 64-72.1.2
Royal Society B: Biological Sciences, 2014, 281, 20140744.
Demographic response of snakeâ€necked turtles correlates with indigenous harvest and feral pig predation in tropical northern Australia. Journal of Animal Ecology, 2007, 76, 1231-1243.1.337
125

127	50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology and Evolution, 2013, 28, 187-188.	4.2	37
128	Uncertainties in dating constrain model choice for inferring extinction time from fossil records. Quaternary Science Reviews, 2015, 112, 128-137.	1.4	37
129	Population viability analyses on a cycling population: a cautionary tale. Biological Conservation, 2001, 97, 61-69.	1.9	36
130	Disease and the devil: density-dependent epidemiological processes explain historical population fluctuations in the Tasmanian devil. Ecography, 2005, 28, 181-190.	2.1	35
131	Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case. Energy Policy, 2012, 42, 4-8.	4.2	35
132	Is there a Pleistocene archaeological site at Cuddie Springs?. Archaeology in Oceania, 2006, 41, 1-11.	0.3	34
133	Land management affects grass biomass in the Eucalyptus tetrodonta savannas of monsoonal Australia. Austral Ecology, 2007, 32, 446-452.	0.7	34
134	Importance of endogenous feedback controlling the longâ€term abundance of tropical mosquito species. Population Ecology, 2008, 50, 293-305.	0.7	34
135	Ecology Needs a Convention of Nomenclature. BioScience, 2014, 64, 311-321.	2.2	34
136	Correlations among Extinction Risks Assessed by Different Systems of Threatened Species Categorization. Conservation Biology, 2004, 18, 1624-1635.	2.4	33
137	Conservation Value of Non-Native Banteng in Northern Australia. Conservation Biology, 2006, 20, 1306-1311.	2.4	33
138	Growth and survival of two north Australian relictual tree species, Allosyncarpia ternata (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecological Research, 2007, 22, 228-236.	0.7	33
139	Southeast Asian birds in peril. Auk, 2006, 123, 275.	0.7	32

Nuclear power can reduce emissions and maintain a strong economy: Rating Australiaâ ℓ^{TM} s optimal
$5.1 \quad 32$
140 future electricity-generation mix by technologies and policies. Applied Energy, 2014, 136, 712-725.

First, do no harm: A systematic review of deforestation spillovers from protected areas. Global
Ecology and Conservation, 2019, 18, e00591.
1.0

32

142 Southeast Asian birds in peril. Auk, 2006, 123, 275-277.
0.7

31

143 Geographic range determinants of two commercially important marine molluscs. Diversity and
Distributions, 2012, 18, 133-146.
1.9

31

Selective hunting of juveniles as a cause of the imperceptible overkill of the Australian Pleistocene
megafauna. Alcheringa, 2006, 30, 39-48.

Minimum viable population size: not magic, but necessary. Trends in Ecology and Evolution, 2011, 26, 619-620.

The SAFE index: using a threshold population target to measure relative species threat. Frontiers in Ecology and the Environment, 2011, 9, 521-525.
1.9

Spatially explicit spreadsheet modelling for optimising the efficiency of reducing invasive animal
148 density. Methods in Ecology and Evolution, 2010, 1, 53-68.
2.2

149 Roost Characteristics of Invasive Mynas in Singapore. Journal of Wildlife Management, 2002, 66, 1118.
$0.7 \quad 27$

Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern
Australia. Molecular Ecology, 2007, 16, 2998-3008.
2.0

27

Monitoring Contrasting Land Management in the Savanna Landscapes of Northern Australia.
Environmental Management, 2008, 41, 501-515.
1.2

27

A nuclear- to-gas transition in South Korea: Is it environmentally friendly or economically viable?.
Energy Policy, 2018, 112, 67-73.

Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and
pathogen dynamics. Journal of the Royal Society Interface, 2015, 12, 20141184.

Environmental and health impacts of a policy to phase out nuclear power in Sweden. Energy Policy, 2015, 84, 1-10.

How secure is the Lord Howe Island Woodhen? A population viability analysis using VORTEX. Pacific
How secure is the Lord Howe island
Conservation Biology, 1997, 3, 125.
0.5

25

Wetland conservation and sustainable use under global change: a tropical Australian case study
156 using magpie geese. Ecography, 2010, 33, 818-825.
2.1

25

157 Longâ€term breeding phenology shift in royal penguins. Ecology and Evolution, 2012, 2, 1563-1571.
0.8

25

How interactions between animal movement and landscape processes modify local range dynamics and extinction risk. Biology Letters, 2014, 10, 20140198.
1.0

25

Quaternary Extinctions and Their Link to Climate Change. , 2012, , 179-198.

Geographic variation in the ecological effects of extinction of Australia's Pleistocene megafauna.
Ecography, 2016, 39, 109-116.

Predicting the Timing and Magnitude of Tropical Mosquito Population Peaks for Maximizing Control
Efficiency. PLoS Neglected Tropical Diseases, 2009, 3, e385.

Persistence of lowland rainforest birds in a recently logged area in central Java. Bird Conservation International, 2005, 15, .

163	Booming during a bust: Asynchronous population responses of arid zone lizards to climatic variables. Acta Oecologica, 2012, 40, 51-61.	0.5	23
164	Strength of density feedback in census data increases from slow to fast life histories. Ecology and Evolution, 2012, 2, 1922-1934.	0.8	23
165	Novel coupling of individualấbased epidemiological and demographic models predicts realistic dynamics of tuberculosis in alien buffalo. Journal of Applied Ecology, 2012, 49, 268-277.	1.9	23
166	Ecologically realistic estimates of maximum population growth using informed $\langle\mathrm{scp}\rangle \mathrm{B}</ \mathrm{scp}$ >ayesian priors. Methods in Ecology and Evolution, 2013, 4, 34-44.	2.2	23
167	Training future generations to deliver evidenceâ€based conservation and ecosystem management. Ecological Solutions and Evidence, 2021, 2, e12032.	0.8	23
168	Managing the longâ€term persistence of a rare cockatoo under climate change. Journal of Applied Ecology, 2012, 49, 785-794.	1.9	22
169	Processâ explicit models reveal pathway to extinction for woolly mammoth using patternâ€oriented validation. Ecology Letters, 2022, 25, 125-137.	3.0	22
170	Sustainable harvest regimes for magpie geese (Anseranas semipalmata) under spatial and temporal heterogeneity. Wildlife Research, 2005, 32, 459.	0.7	21
171	INCORPORATING KNOWN SOURCES OF UNCERTAINTY TO DETERMINE PRECAUTIONARY HARVESTS OF SALTWATER CROCODILES. , 2006, 16, 1436-1448.		21

172 Kyoto: doing our best is no longer enough. Nature, 2007, 450, 478-478. 13.7 21
173 Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on 1.1 21
Effective Forest Management and Greenhouse Gas Mitigation. PLoS ONE, 2012, 7, e43846.
Effects of prey metapopulation structure on the viability of blackấfooted ferrets in plagueấfimpacted landscapes: a metamodelling approach. Journal of Applied Ecology, 2014, 51, 735-745. 1.9 21
174Tick exposure and extreme climate events impact survival and threaten the persistence of a longâ€lived1.321
175 lizard. Journal of Animal Ecology, 2016, 85, 598-610.Economic and environmental costs of replacing nuclear fission with solar and wind energy in4.221Sweden. Energy Policy, 2018, 112, 56-66.
13.7 20177 Rarity bites. Nature, 2006, 444, 555-556.Artificial nest predation rates vary among habitats in the Australian monsoon tropics. EcologicalDecoupling of component and ensemble density feedbacks in birds and mammals. Ecology, 2012, 93,1728-1740.
181 Extinction debt from climate change for frogs in the wet tropics. Biology Letters, 2016, 12, 20160236.

182 | Beyond Singapore: Hong Kong and Asian biodiversity. Trends in Ecology and Evolution, 2005, 20, |
| :--- |
| $281-282$. |

183 Dangers of Sensationalizing Conservation Biology. Conservation Biology, 2007, 21, 570-571. 18

Modelling to forestall extinction of Australian tropical birds. Journal Fur Ornithologie, 2007, 148,
1.2

311-320.

Quantifying the Drivers of Larval Density Patterns in Two Tropical Mosquito Species to Maximize Control Efficiency. Environmental Entomology, 2009, 38, 1013-1021.
$0.7 \quad 18$

Experimental evidence for density-dependent responses to mortality of snake-necked turtles.
Oecologia, 2009, 159, 271-281.
0.9

18
European rabbit survival and recruitment are linked to epic
in their exotic range. Austral Ecology, 2012, 37, 945-957.

0.7

18
188 Model-based adaptive spatial sampling for occurrence map construction. Statistics and Computing, 2013, 23, 29-42.

Fire impacts recruitment more than survival of smallâ€mammals in a tropical savanna. Ecosphere, 2015, 6, 1-22.

199	Tracking shifting range margins using geographical centroids of metapopulations weighted by population density. Ecological Modelling, 2013, 269, 61-69.	1.2
200	Sensitivity Analysis of Range Dynamics Models (SARDM): Quantifying the influence of parameter uncertainty on forecasts of extinction risk from global change. Environmental Modelling and Software, 2016, 83, 193-197.	1.9
201	How much can nuclear energy do about global warming?. International Journal of Clobal Energy Issues, 2017, 40, 43.	0.2
202	Economic Feasibility of Energy Supply by Small Modular Nuclear Reactors on Small Islands: Case Studies of Jeju, Tasmania and Tenerife. Energies, 2018, 11, 2587.	1.6
203	The conservation biologist's toolbox â€" principles for the design and analysis of conservation studies. , 2010, , 313-340.	
204	Plausible bounds for maximum rate of increase in magpie geese (Anseranas semipalmata): implications for harvest. Wildlife Research, 2005, 32, 465.	0.7
205	How to monitor elusive lizards: comparison of captureấ"recapture methods on giant day geckos (<i>Gekkonidae</i>, <i>Phelsuma madagascariensis grandis</i>) in the Masoala rainforest exhibit, Zurich Zoo. Ecological Research, 2009, 24, 345-353.	0.7
206	Using plant distributions to predict the current and future range of a rare lizard. Diversity and Distributions, 2013, 19, 1125-1137.	1.9
207	Egress! How technophilia can reinforce biophilia to improve ecological restoration. Restoration Ecology, 2016, 24, 843-847.	1.4
208	A validated ensemble method for multinomial land-cover classification. Ecological Informatics, 2020, 56, 101065.	2.3

209 Accidents alter animal fitness landscapes. Ecology Letters, 2021, 24, 920-934.

3.0
\square
Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate.
1.1

14
Predicting the Distribution of
PLoS ONE, 2012, 7, e46554.
$1.1 \quad 14$

Letters to the editor about the contents of past issues and comment on topics of current concern
1.9

14 toFrontiersreaders. Frontiers in Ecology and the Environment, 2006, 4, 235-237.

Threat and response: A decade of decline in a regionally endangered rainforest palm affected by fire
1.9

13 and introduced animals. Biological Conservation, 2006, 132, 362-375.

Managing an Endangered Asian Bovid in an Australian National Park: The Role and Limitations of
Ecological-Economic Models in Decision-Making. Environmental Management, 2006, 38, 463-469.
1.2

13

215 South Korean energy scenarios show how nuclear power can reduce future energy and
4.2
217 Parsimonious model selection using information theory: a modified selection rule. Ecology, 2021, 102, e03475.221 Forecasts of habitat suitability improve habitat corridor efficacy in rapidly changing environments.1.9Diversity and Distributions, 2014, 20, 1044-1057.
222 Obliquityâ€edriven expansion of North Atlantic sea ice during the last glacial. Geophysical ResearchLetters, 2015, 42, 10,382.
223 Look Down to See Whatâ $€^{T M}$ s Up: A Systematic Overview of Treefall Dynamics in Forests. Forests, 2017, 8, 0.9 12
224 Natureâ $€^{T M}$ s untold stories: an overview on the availability and type of on-line data on long-termbiodiversity monitoring. Biodiversity and Conservation, 2018, 27, 2971-2987.
225 Habitat suitability, live abundance and their link to road mortality of Tasmanian wildlife. Wildlife Research, 2019, 46, 236. 0.7 12
226 Multiscale modelling of the drivers of rainforest boundary dynamics in Kakadu National Park,northern Australia. Diversity and Distributions, 2007, 13, 680-691.1.212
227 Fragile Southeast Asian biotas. Biological Conservation, 2008, 141, 883-884.1.911
228 Flooding Policy Makers with Evidence to Save Forests. Ambio, 2009, 38, 125-126. 2.8 11
229 Relative need for conservation assessments of vascular plant species among ecoregions. Journal of 1.4 11
Biogeography, 2011, 38, 55-68.1.9Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not231 Protected-area planning in the Brazilian Amazon should prioritize2.211
Drivers of increasing global crop production: A decomposition analysis. Environmental Research Letters, 2020, 15, $0940 b 6$.
50/500 rules need upward revision to 100/1000 â€" Response to Franklin et al.. Biological Conservation,
$230 \quad 2014,176,286$.12

235 | Ecosystem-Based Tsunami Mitigation for Tropical Biodiversity Hotspots. Trends in Ecology and |
| :--- |
| Evolution, 2020, 35, 96-100. |

236 Fertility partially drives the relative success of two introduced bovines (Bubalus bubalis and Bos) Tj ETQq0 00 rgBT dQverlock 10 Tf 507

237	Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals. PLoS ONE, 2014, 9, e91536.	1.1

244 How will climate change affect plantâ€"herbivore interactions? A tropical waterbird case study. Emu,
2009, 109, 126-134.

$0.2 \quad 8$

> 245 Satellite telemetry and seasonal movements of Magpie Geese (Anseranas semipalmata) in tropical northern Australia. Emu, 2010, 110, 160-164.
$0.2 \quad 8$

The influence of non-climate predictors at local and landscape resolutions depends on the autecology of the species. Austral Ecology, 2014, 39, 710-721.
$0.7 \quad 8$
\square
Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates. EPJ Nuclear
Sciences \& Technologies, 2015, 1,3.
$0.3 \quad 8$
Sciences \& Technologies, 2015, 1, 3.

Empirical tests of harvestâ€induced bodyâ€size evolution along a geographic gradient in <scp>A</scp>ustralian macropods. Journal of Animal Ecology, 2015, 84, 299-309.

Targeting season and age for optimizing control of invasive rabbits. Journal of Wildlife Management,
249 2016, 80, 990-999.
$0.7 \quad 8$

Implications of Australia's Population Policy for Future Greenhouse Gas Emissions Targets. Asia and
the Pacific Policy Studies, 2016, 3, 249-265.
Energy research within the UNFCCC: a proposal to guard against ongoing climate-deadlock. Climate
Policy, 2016, 16, 803-813.

256 Ravens exploit wildlife roadkill and agricultural landscapes but do not affect songbird assemblages.
257 Bioregionalization approaches for conservation: methods, biases, and their implications for
$1.2 \quad 7$
Australian biodiversity. Biodiversity and Conservation, 2020, 29, 1-17.

The Patterns and Causes of Dermatitis in Terrestrial and Semi-Aquatic Mammalian Wildlife. Animals,
2021, 11, 1691.
$1.0 \quad 7$

259 Too hot for the devil? Did climate change cause the midâ€Holocene extinction of the Tasmanian devil
<i>Sarcophilus harrisii</i> from mainland Australia?. Ecography, 2022, 2022,
2.1

7

260 Can Morphometrics Predict Sex in Varanids?. Journal of Herpetology, 2007, 41, 133-140.
0.2

6
261 An aggregative response of the tropical Australian magpie goose (<i>Anseranas semipalmata</i>) toseasonal floodplains. Journal of Tropical Ecology, 2011, 27, 171-180.
$0.5 \quad 6$
Scale dependency of metapopulation models used to predict climate change impacts on small mammals.Ecography, 2013, 36, 832-841.
2.16
263 Trophic rewilding of native extirpated predators on Bass Strait Islands could benefit woodland birds. 0.2 6
Emu, 2020, 120, 260-262.
$0.5 \quad 5$

Putative extinction of two sawfish species in Mexico and the United States. Neotropical Ichthyology,
0.5

5
2009, 7, 508-512.
$0.7 \quad 5$
$265 \quad$ 216-226.

Rainfall and temperature variation does not explain arid species diversity in outback Australia.
271
272

> Experimental comparison of aerial larvicides and habitat modification for controlling
> diseaseâ€carrying <i>Aedes vigilax</i> mosquitoes. Pest Management Science, 2012, 68, 709-717.

Evidence for a broad-scale decline in giant Australian cuttlefish (Sepia apama) abundance from non-targeted survey data. Marine and Freshwater Research, 2015, 66, 692.
$0.7 \quad 4$
273

Innovations and limits in methods of forecasting global environmental change. Basic and Applied Ecology, 2016, 17, 565-575.

Impact of intense disturbance on the structure and composition of wet-eucalypt forests: A case study
274 from the Tasmanian 2016 wildfires. PLoS ONE, 2018, 13, e0200905.
1.14
$1.2 \quad 4$

$275 \quad$| Roadkill islands: Carnivore extinction shifts seasonal use of roadside carrion by generalist avian |
| :--- |
| scavenger. Journal of Animal Ecology, 2021, 90, 2268-2276. |

$1.3 \quad 4$

Nuclear energy and bio energy carbon capture and storage, keys for obtaining $1.5 \hat{A}^{\circ} \mathrm{C}$ mean surface temperature limit. International Journal of Global Energy Issues, 2017, 40, 240.
0.23

277 Analyzing linear spatial features in ecology. Ecology, 2018, 99, 1490-1497.
1.5

Characterizing the spatio-temporal threats, conservation hotspots and conservation gaps for the most extinction-prone bird family (Aves: Rallidae). Royal Society Open Science, 2021, 8, 210262.

279 The state and conservation of Southeast Asian biodiversity. Topics in Biodiversity and Conservation,
0.3

3

280 Large Estimates of Minimum Viable Population Sizes. Conservation Biology, 2004, 18, 1178-1179.
2.4

2

281 Population Ecology: First Principles. Austral Ecology, 2004, 29, 684-685.
0.7

2

282 Homage to an Avant-Garde Conservation Leader, Navjot Sodhi. Conservation Biology, 2011, 25, 1056-1058.
$2.4 \quad 2$
283 Genetic structure of introduced swamp buffalo subpopulations in tropical Australia. Austral Ecology, 2013, 38, 46-56.
$0.7 \quad 2$

284 Clarity and Precision of Language Are a Necessary Route in Ecology. BioScience, 2014, 64, 373-374.
$2.2 \quad 2$
Reply to Oâ $€^{\text {TM }}$ Neill et al. and Oâ $€^{\text {TM }}$ Sullivan: Fertility reduction will help, but only in the long term.
285 Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E508-E509.
3.32

286 Emigration is costly, but immigration has benefits in humanâ€altered landscapes. Functional Ecology,
2016, 30, 1478-1479.
1.7

2

287 Importance of the Local Environment on Nutrient Cycling and Litter Decomposition in a Tall Eucalypt Forest. Forests, 2019, 10, 340.

0.9

Value-added diagnostics for the assessment and validation of integrated assessment models.
Renewable and Sustainable Energy Reviews, 2021, 152, 111605.

291	Response to Hau : Beyond Singapore: Hong Kong and Asian biodiversity. Trends in Ecology and Evolution, 2005, 20, 282-283.	4.2	1
292	Nuclear power: yes or no?. Physics World, 2010, 23, 24-25.	0.0	1
293	Survival estimation in a longâ€lived monitor lizard: radioâ€tracking of <i>Varanus mertensi<\|i>. Population Ecology, 2010, 52, 243-247.	0.7	1
294	Using climate variables to predict small mammal occurrence in hot, dry environments. Landscape Ecology, 2013, 28, 741-753.	1.9	1
295	Closing the Cycle: How South Australia and Asia Can Benefit from Reấinventing Used Nuclear Fuel Management. Asia and the Pacific Policy Studies, 2017, 4, 166-175.	0.6	1
296	A practical method for creating a digital topographic surface for ecological plots using ground-based measurements. Landscape Ecology, 2018, 33, 9-18.	1.9	1
297	Astroâ€ecology? Shifting the interdisciplinary collaboration paradigm. Ecology and Evolution, 2018, 8 , 9586-9589.	0.8	1

298 At the crossroads: An uncertain future facing the electricityâ€generation sector in South Korea. Asia and the Pacific Policy Studies, 2018, 5, 522-532.
$0.6 \quad 1$

299 Hot, unpredictable weather interacts with land use to restrict the distribution of the Yellow-tailed
Black-Cockatoo. Emu, 2021, 121, 323-332.
0.21

300 Is the Carpentarian Rock-rat Zyzomys palatalis critically endangered?. Pacific Conservation Biology,
2006, 12, 134.
0.5

1

301 Does foraging mode influence life history traits? A comparative study of growth, maturation and
301 survival of two species of sympatric snakes from south-eastern Australia. Austral Ecology, 2003, 28,
$0.7 \quad 1$ 601-610.

302 Roughing it: terrain is crucial in identifying novel translocation sites for the vulnerable brush-tailed
$1.1 \quad 1$ rock-wallaby (Petrogale pencillata). Royal Society Open Science, 2020, 7, 201603.

303 Spatial pattern analysis of lineâ€segment data in ecology. Ecology, 2022, 103, e03597.
1.5

1

304 Co-Extinctions of Tropical Butterflies and their Hostplants1. Biotropica, 2004, 36, 272.
0.8

0

305 Large Estimates of Minimum Viable Population Sizes. Conservation Biology, 2004, 18, 1179-1179.
2.4

0
<i>Climate Change Biology</i>. By LeeÂHannah. Academic Press. Amsterdam and Boston (Massachusetts):
307 Elsevier. $\$ 59.95$ (paper). xii + 402 p.; ill.; index. ISBN: 978 â€ $€$ ấd 2 â $€ 374182$ â€0. 2011. Quarterly Review of
307 Elsevier. $\$ 59.95$ (paper). xii + 402 p.; ill.; index. ISBN: 978â€0â€ 2â€374182â€0. 2011.. Quarterly Review of Biology, 0 2011, 86, 341-341.
<i>The Woodhen: A Flightless Island Bird Defying Extinction</i>. By Clifford B. Frith. Collingwood
309 (Australia): CSIRO Publishing. AU \$59.95. xiv + 225 p.; ill.; index. ISBN: 978-0-643-10870-7. 2013.. Quarterly
Review of Biology, 2014, 89, 406-407.

Conservation. Second Edition. By Clive Hambler and Susan M. Canney. Cambridge and New York: 310 Cambridge University Press. $\$ 45.00$ (paper). $x+416$ p. +22 pl.; ill.; index to species names and index. ISBN: 978-0-521-18168-6. 2013.. Quarterly Review of Biology, 2014, 89, 387-387.

311 Fire frequency is relatively more important than fire size â€" A reply to Russell-Smith et al. Biological

Hot topics in biodiversity and climate change research. F1000Research, 2015, 4, 928.

[^0]: 35 iEcology: Harnessing Large Online Resources to Generate Ecological Insights. Trends in Ecology and

