Francesco Marangoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588220/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Transcription Factor NFAT Promotes Exhaustion of Activated CD8 + T Cells. Immunity, 2015, 42, 265-278.	14.3	555
2	Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell, 2019, 178, 160-175.e27.	28.9	367
3	HIV-infected T cells are migratory vehicles for viral dissemination. Nature, 2012, 490, 283-287.	27.8	290
4	Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood, 2009, 113, 6288-6295.	1.4	207
5	Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. Journal of Clinical Investigation, 2014, 124, 2425-2440.	8.2	203
6	CXCR6 positions cytotoxic TÂcells to receive critical survival signals in the tumor microenvironment. Cell, 2021, 184, 4512-4530.e22.	28.9	180
7	WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. Journal of Experimental Medicine, 2007, 204, 369-380.	8.5	167
8	The Transcription Factor NFAT Exhibits Signal Memory during Serial T Cell Interactions with Antigen-Presenting Cells. Immunity, 2013, 38, 237-249.	14.3	155
9	Migratory DCs activate TGF-l ² to precondition naÃ⁻ve CD8 ⁺ T cells for tissue-resident memory fate. Science, 2019, 366, .	12.6	149
10	Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature, 2019, 570, 112-116.	27.8	147
11	Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction. Molecular Therapy, 2004, 10, 903-915.	8.2	106
12	Defective Th1 Cytokine Gene Transcription in CD4+ and CD8+ T Cells from Wiskott-Aldrich Syndrome Patients. Journal of Immunology, 2006, 177, 7451-7461.	0.8	103
13	Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell, 2021, 184, 3998-4015.e19.	28.9	92
14	Efficacy of Gene Therapy for Wiskott-Aldrich Syndrome Using a WAS Promoter/cDNA-Containing Lentiviral Vector and Nonlethal Irradiation. Human Gene Therapy, 2006, 17, 303-313.	2.7	82
15	Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models. Molecular Therapy, 2009, 17, 1073-1082.	8.2	77
16	Inhibition of CDK4/6 Promotes CD8 T-cell Memory Formation. Cancer Discovery, 2021, 11, 2564-2581.	9.4	58
17	The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. Journal of Experimental Medicine, 2009, 206, 735-742.	8.5	53
18	Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4 ⁺ T cell responses. Science Advances, 2021, 7, .	10.3	45

#	Article	IF	CITATIONS
19	Revertant T lymphocytes in a patient with Wiskott-Aldrich syndrome: Analysis of function and distribution in lymphoid organs. Journal of Allergy and Clinical Immunology, 2010, 125, 439-448.e8.	2.9	31
20	Gene therapy for Wiskott-Aldrich syndrome: History, new vectors, future directions. Journal of Allergy and Clinical Immunology, 2020, 146, 262-265.	2.9	31
21	Prevention of HER-2/neu transgenic mammary carcinoma by tamoxifen plus interleukin 12. International Journal of Cancer, 2003, 105, 384-389.	5.1	28
22	Autonomous role of Wiskott-Aldrich syndrome platelet deficiency in inducing autoimmunity and inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 1272-1284.	2.9	28
23	Guidance factors orchestrating regulatory T cell positioning in tissues during development, homeostasis, and response. Immunological Reviews, 2019, 289, 129-141.	6.0	24
24	B Cells Drive Autoimmunity in Mice with CD28-Deficient Regulatory T Cells. Journal of Immunology, 2017, 199, 3972-3980.	0.8	21
25	Tumor Tolerance–Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin. Journal of Immunology, 2018, 200, 3647-3661.	0.8	17
26	The cell division control protein 42–Src family kinase–neural Wiskott–Aldrich syndrome protein pathway regulates human proplatelet formation. Journal of Thrombosis and Haemostasis, 2016, 14, 2524-2535.	3.8	15
27	Leukocyte Tracking Database, a collection of immune cell tracks from intravital 2-photon microscopy videos. Scientific Data, 2018, 5, 180129.	5.3	13
28	Large Scale Prediction of Protein Interactions by a SVM-Based Method. Lecture Notes in Computer Science, 2003, , 296-301.	1.3	2
29	CD44 Keeps Tumor Killers Polarized. Immunity, 2008, 29, 843-845.	14.3	1
30	Erratum to "Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction― Molecular Therapy, 2005, 11, 492.	8.2	0
31	65. Long-Term Effects of Hematopoietic Stem Cell Gene Therapy in the Murine Model of Wiskott-Aldrich Syndrome: Persistence of Functional Correction of T Cells and Lack of Malignant Trasformation. Molecular Therapy, 2006, 13, S27-S28.	8.2	0
32	Current understanding of the Wiskott–Aldrich syndrome and prospects for gene therapy. Expert Review of Clinical Immunology, 2007, 3, 205-215.	3.0	0
33	Efficacy of Gene Therapy for Wiskott-Aldrich Syndrome Using a WAS Promoter/cDNA-Containing Lentiviral Vector and Nonlethal Irradiation. Human Gene Therapy, 2006, .	2.7	0
34	Evidence for Efficacy and Safety of Lentiviral Mediated Gene Transfer in T Cells and CD34+ Cells from Wiskott-Aldrich Syndrome Patients Blood, 2006, 108, 3279-3279.	1.4	0
35	The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. Journal of Cell Biology, 2009, 185, i1-i1.	5.2	0