Charles A Parkos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3588187/publications.pdf

Version: 2024-02-01

48315 57758 8,150 127 44 88 citations h-index g-index papers 140 140 140 10579 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunology, 2022, 15, 211-222.	6.0	19
2	Astrocytic junctional adhesion molecule-A regulates T-cell entry past the glia limitans to promote central nervous system autoimmune attack. Brain Communications, 2022, 4, fcac044.	3.3	4
3	SIRPÎ \pm - CD47 axis regulates dendritic cell-T cell interactions and TCR activation during T cell priming in spleen. PLoS ONE, 2022, 17, e0266566.	2.5	4
4	Claudinâ€23 Strengthens the Colonic Epithelial Barrier by Regulating Claudinâ€3 and â€4 proteins in the Tight Junction Plasma Membrane. FASEB Journal, 2022, 36, .	0.5	1
5	Neutrophil expressed CD47 regulates CD11b/CD18-dependent neutrophil transepithelial migration in the intestine in vivo. Mucosal Immunology, 2021, 14, 331-341.	6.0	19
6	Dysregulation of intestinal epithelial CFTR-dependent Clâ^' ion transport and paracellular barrier function drives gastrointestinal symptoms of food-induced anaphylaxis in mice. Mucosal Immunology, 2021, 14, 135-143.	6.0	9
7	Systematic Scoring Analysis for Intestinal Inflammation in a Murine Dextran Sodium Sulfate-Induced Colitis Model. Journal of Visualized Experiments, 2021, , .	0.3	5
8	Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice using a Standardized Intestinal Loop Model. Journal of Visualized Experiments, 2021, , .	0.3	6
9	Regulation of intestinal epithelial intercellular adhesion and barrier function by desmosomal cadherin desmocollin-2. Molecular Biology of the Cell, 2021, 32, 753-768.	2.1	18
10	JAMâ€A signals through the Hippo pathway to regulate intestinal epithelial proliferation. FASEB Journal, 2021, 35, .	0.5	0
11	Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18. FASEB Journal, 2020, 34, 2326-2343.	0.5	20
12	WD40 Repeat Protein 26 Negatively Regulates Formyl Peptide Receptor-1 Mediated Wound Healing in Intestinal Epithelial Cells. American Journal of Pathology, 2020, 190, 2029-2038.	3.8	2
13	Blocking integrin $\hat{l}\pm4\hat{l}^2$ 7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis. Journal of Hepatology, 2020, 73, 1013-1022.	3.7	47
14	Desmocollin-2 promotes intestinal mucosal repair by controlling integrin-dependent cell adhesion and migration. Molecular Biology of the Cell, 2020, 31, 407-418.	2.1	26
15	Western dietâ€induced increase in colonic bile acids compromises epithelial barrier in nonalcoholic steatohepatitis. FASEB Journal, 2020, 34, 7089-7102.	0.5	30
16	Resolvin E1 is a pro-repair molecule that promotes intestinal epithelial wound healing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9477-9482.	7.1	56
17	Targeting epithelium-expressed sialyl Lewis glycans improves colonic mucosal wound healing and protects against colitis. JCI Insight, 2020, 5, .	5.0	15
18	Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nature Communications, 2019, 10, 5004.	12.8	32

#	Article	IF	CITATIONS
19	Formyl peptide receptor 2 regulates monocyte recruitment to promote intestinal mucosal wound repair. FASEB Journal, 2019, 33, 13632-13643.	0.5	33
20	$TNF\hat{l}_\pm$ promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium. Mucosal Immunology, 2019, 12, 909-918.	6.0	34
21	Gab2 and Gab3 Redundantly Suppress Colitis by Modulating Macrophage and CD8+ T-Cell Activation. Frontiers in Immunology, 2019, 10, 486.	4.8	11
22	Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice. Mucosal Immunology, 2019, 12, 668-678.	6.0	27
23	Role of JAM-A tyrosine phosphorylation in epithelial barrier dysfunction during intestinal inflammation. Molecular Biology of the Cell, 2019, 30, 566-578.	2.1	32
24	Novel Junctional Adhesion Moleculeâ€Like (JAML) Regulates Neutrophil Transepithelial Migration During Intestinal Inflammation. FASEB Journal, 2019, 33, 375.7.	0.5	1
25	Innate immune cell–epithelial crosstalk during wound repair. Journal of Clinical Investigation, 2019, 129, 2983-2993.	8.2	143
26	Impaired CD47–SIRPα Interactions in Antigenâ€Priming Results in Defects in Proliferation In Vivo. FASEB Journal, 2019, 33, .	0.5	0
27	Integrin receptor \hat{l}_\pm 4 \hat{l}^2 7 + CD4 T cells promote mucosal and hepatic inflammation in NASH. FASEB Journal, 2019, 33, lb57.	0.5	0
28	Impaired Peritoneal Macrophage Function and Delayed Neutrophil Recruitment are Secondary to a Leaky Gut in JAMâ€A Deficient Mice. FASEB Journal, 2019, 33, 375.6.	0.5	0
29	Targeting Epithelial Expressed Sialyl Lewis A Improves Intestinal Mucosal Wound Healing and Protects Against Colitis. FASEB Journal, 2019, 33, 34.4.	0.5	0
30	Role of negative regulation of immune signaling pathways in neutrophil function. Journal of Leukocyte Biology, 2018, 103, 1029-1041.	3.3	16
31	Intracellular Desmoglein-2 cleavage sensitizes epithelial cells to apoptosis in response to pro-inflammatory cytokines. Cell Death and Disease, 2018, 9, 389.	6.3	22
32	Estrogen Receptor-Alpha (ESR1) Governs the Lower Female Reproductive Tract Vulnerability to Candida albicans. Frontiers in Immunology, 2018, 9, 1033.	4.8	22
33	Analysis of leukocyte transepithelial migration using an in vivo murine colonic loop model. JCI Insight, 2018, 3, .	5.0	26
34	Role of differential phosphorylation of JAMâ€A in regulating epithelial barrier function. FASEB Journal, 2018, 32, 286.6.	0.5	0
35	Desmosomal Cadherins Desmogleinâ€2 or Desmocollinâ€2 Regulate Intestinal Epithelial Barrier Function and Mucosal Repair. FASEB Journal, 2018, 32, 286.10.	0.5	0
36	Expression of Lewis-a glycans on polymorphonuclear leukocytes augments function by increasing transmigration. Journal of Leukocyte Biology, 2017, 102, 753-762.	3.3	12

3

#	Article	IF	CITATIONS
37	Defects in CD4+ T cell LFA-1 integrin-dependent adhesion and proliferation protect <i>Cd47</i> â^'/â^' mice from EAE. Journal of Leukocyte Biology, 2017, 101, 493-505.	3.3	13
38	Bioengineering Bacterially Derived Immunomodulants: A Therapeutic Approach to Inflammatory Bowel Disease. ACS Nano, 2017, 11, 9650-9662.	14.6	24
39	Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. Journal of Clinical Investigation, 2017, 127, 3510-3520.	8.2	140
40	Redox control of Cas phosphorylation requires Abl kinase in regulation of intestinal epithelial cell spreading and migration. American Journal of Physiology - Renal Physiology, 2016, 311, G458-G465.	3.4	7
41	Neutrophil-Epithelial Interactions. American Journal of Pathology, 2016, 186, 1404-1416.	3.8	81
42	Claudin-based barrier differentiation in the colonic epithelial crypt niche involves Hopx/Klf4 and Tcf7l2/Hnf4- \hat{l} ± cascades. Tissue Barriers, 2016, 4, e1214038.	3.2	17
43	Deposition of microparticles by neutrophils onto inflamed epithelium: a new mechanism to disrupt epithelial intercellular adhesions and promote transepithelial migration. FASEB Journal, 2016, 30, 4007-4020.	0.5	50
44	Pathobiology of neutrophil–epithelial interactions. Immunological Reviews, 2016, 273, 94-111.	6.0	70
45	Inflammation and the Intestinal Barrier: Leukocyte–Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology, 2016, 151, 616-632.	1.3	378
46	Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology, 2016, 151, 733-746.e12.	1.3	235
47	Targeting of Neutrophil Lewis X Blocks Transepithelial Migration and Increases Phagocytosis and Degranulation. American Journal of Pathology, 2016, 186, 297-311.	3.8	25
48	Cutting Edge: IL-36 Receptor Promotes Resolution of Intestinal Damage. Journal of Immunology, 2016, 196, 34-38.	0.8	108
49	HNF4α Regulates Claudin-7 Protein Expression during Intestinal Epithelial Differentiation. American Journal of Pathology, 2015, 185, 2206-2218.	3.8	32
50	Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration. Tissue Barriers, 2015, 3, e969100.	3.2	37
51	Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier. Molecular Biology of the Cell, 2015, 26, 3165-3177.	2.1	45
52	Junctional Adhesion Molecule A Promotes Epithelial Tight Junction Assembly to Augment Lung Barrier Function. American Journal of Pathology, 2015, 185, 372-386.	3.8	35
53	Human neutrophil formyl peptide receptor phosphorylation and the mucosal inflammatory response. Journal of Leukocyte Biology, 2015, 97, 87-101.	3.3	16
54	Endothelial JAM-A Promotes Reovirus Viremia and Bloodstream Dissemination. Journal of Infectious Diseases, 2015, 211, 383-393.	4.0	27

#	Article	IF	CITATIONS
55	CLMP Expression is Increased in the Intestinal Epithelium Under Inflammatory Conditions and Regulates Intercellular Adhesion, Proliferation and Migration. FASEB Journal, 2015, 29, 282.9.	0.5	O
56	WNT1â€inducible protein 1 functions as a proâ€repair molecule in the intestine. FASEB Journal, 2015, 29, 142.10.	0.5	0
57	Galectin-3 Regulates Desmoglein-2 and Intestinal Epithelial Intercellular Adhesion. Journal of Biological Chemistry, 2014, 289, 10510-10517.	3.4	43
58	<i>Trans-</i> dimerization of JAM-A regulates Rap2 and is mediated by a domain that is distinct from the <i>cis-</i> dimerization interface. Molecular Biology of the Cell, 2014, 25, 1574-1585.	2.1	29
59	Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Molecular Biology of the Cell, 2014, 25, 2710-2719.	2.1	100
60	IFNÎ ³ -induced suppression of Î ² -catenin signaling: evidence for roles of Akt and 14.3.3ζ. Molecular Biology of the Cell, 2014, 25, 2894-2904.	2.1	22
61	JAM-related proteins in mucosal homeostasis and inflammation. Seminars in Immunopathology, 2014, 36, 211-226.	6.1	89
62	α3/4 Fucosyltransferase 3–Dependent Synthesis of Sialyl Lewis A on CD44 Variant Containing Exon 6 Mediates Polymorphonuclear Leukocyte Detachment from Intestinal Epithelium during Transepithelial Migration. Journal of Immunology, 2013, 191, 4804-4817.	0.8	42
63	CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions. Molecular Biology of the Cell, 2013, 24, 3358-3368.	2.1	59
64	JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Molecular Biology of the Cell, 2013, 24, 2849-2860.	2.1	108
65	Annexin A2 Regulates \hat{l}^21 Integrin Internalization and Intestinal Epithelial Cell Migration. Journal of Biological Chemistry, 2013, 288, 15229-15239.	3.4	48
66	The Role of Polymorphonuclear Leukocyte Trafficking in the Perpetuation of Inflammation During Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 1556-1565.	1.9	114
67	Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. Journal of Clinical Investigation, 2013, 123, 443-454.	8.2	244
68	Regional Wnt signatures in the colon and the influence of commensal bacteria. FASEB Journal, 2013, 27, 131.5.	0.5	0
69	Regulation of Mucosal Restitution During Acute Inflammation: JAML Shed From Transmigrating Neutrophils Inhibits Intestinal Epithelial Wound Repair Through Binding to CAR. FASEB Journal, 2013, 27, 137.3.	0.5	0
70	Desmoglein 2 ectodomain regulates intestinal epithelial cell homeostasis. FASEB Journal, 2013, 27, 256.7.	0.5	0
71	The inflammatory cytokine IFNγ regulates intestinal epithelial homeostasis by controlling the spatiotemporal localization of Akt, 14.3.3ζ and βâ€catenin FASEB Journal, 2013, 27, 256.9.	0.5	0
72	Compromised Intestinal Epithelial Barrier Induces Adaptive Immune Compensation that Protects from Colitis. Immunity, 2012, 37, 563-573.	14.3	123

#	Article	IF	CITATIONS
73	Intracellular mediators of JAMâ€A–dependent epithelial barrier function. Annals of the New York Academy of Sciences, 2012, 1257, 115-124.	3.8	33
74	Engagement of ICAMâ€1 mediates neutrophil crawling on the luminal surface of the intestinal epithelium and signals to regulate barrier function. FASEB Journal, 2012, 26, 55.10.	0.5	0
7 5	Downâ€regulation of desmogleinâ€2 in colonic epithelial cells suppresses proliferation and reduces tumor growth via a desmocollinâ€2â€dependent mechanism. FASEB Journal, 2012, 26, 275.2.	0.5	0
76	Compromised intestinal barrier induces adaptive immune responses that protect from colitis. FASEB Journal, 2012, 26, 136.6.	0.5	0
77	JAMâ€A regulates epithelial proliferation through Akt/βâ€catenin signalling. EMBO Reports, 2011, 12, 314-320.	4.5	77
78	CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. Journal of Clinical Investigation, 2011, 121, 4787-4795.	8.2	262
79	Identifying downstream mediators linking JAMâ€A to Barrier Function. FASEB Journal, 2011, 25, 242.5.	0.5	0
80	Neutrophil Migration across Intestinal Epithelium: Evidence for a Role of CD44 in Regulating Detachment of Migrating Cells from the Luminal Surface. Journal of Immunology, 2010, 185, 7026-7036.	0.8	64
81	Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation. American Journal of Pathology, 2010, 177, 512-524.	3.8	304
82	Increased intestinal permeability results in B/T cell mediated responses that protect from development of colitis. FASEB Journal, 2010, 24, 348.4.	0.5	0
83	Oâ€Glycosylation sites on CD44v6 modulate PMN transepithelial migration. FASEB Journal, 2010, 24, .	0.5	O
84	Junctional Adhesion Molecule A Interacts with Afadin and PDZ-GEF2 to Activate Rap1A, Regulate \hat{l}^21 Integrin Levels, and Enhance Cell Migration. Molecular Biology of the Cell, 2009, 20, 1916-1925.	2.1	157
85	CD44v6 mediates neutrophil clearance from the apical surface of the intestinal epithelium. FASEB Journal, 2009, 23, 236.2.	0.5	0
86	Evidence for leukocyte JAMâ€A—mediated regulation of intestinal inflammation. FASEB Journal, 2009, 23, 236.7.	0.5	0
87	Mice lacking Junctional Adhesion Moleculeâ€A (JAMâ€A) develop severe acute lung injury in response to endotoxin. FASEB Journal, 2009, 23, 236.3.	0.5	O
88	Neutrophil-mediated Activation of Epithelial Protease-Activated Receptors-1 and -2 Regulates Barrier Function and Transepithelial Migration. Journal of Immunology, 2008, 181, 5702-5710.	0.8	94
89	Cis-Dimerization Mediates Function of Junctional Adhesion Molecule A. Molecular Biology of the Cell, 2008, 19, 1862-1872.	2.1	63
90	The Epithelium in Inflammatory Bowel Disease: Potential Role of Endocytosis of Junctional Proteins in Barrier Disruption. Novartis Foundation Symposium, 2008, , 115-132.	1.1	66

#	Article	IF	CITATIONS
91	Endothelial CD47 interaction with SIRP $\hat{\mathbf{e}}\hat{\mathbf{i}}^3$ is essential for T cell transendothelial migration in vitro. FASEB Journal, 2008, 22, 666.1.	0.5	O
92	Activation of protein kinase C disrupts epithelial apical junctions via ROCKâ€dependent stimulation of myosin II contractility. FASEB Journal, 2008, 22, 464.6.	0.5	0
93	JAMâ€A regulates epithelial integrin expression and cell shape by activation of Rap1a and Rap1b through a complex with Afadin and PDZâ€GEFs. FASEB Journal, 2008, 22, 464.5.	0.5	0
94	Desmocollin 2 regulates proliferation in the intestinal epithelial cell line SK O15 through activation of the small GTPase Rap1. FASEB Journal, 2008, 22, 464.4.	0.5	0
95	Tollâ€like receptorâ€⊋ and CD47 coâ€stimulatory signaling regulates neutrophil transmigration. FASEB Journal, 2008, 22, 320.6.	0.5	0
96	Guanylate binding proteinâ€1 (GBPâ€1) is upregulated in intestinal epithelia under inflammatory conditions, localizes to tight junctions and regulates epithelial barrier function. FASEB Journal, 2008, 22, 328.4.	0.5	0
97	Evidence for crossreactivity of JAM antibodies: Implications for cellular localization studies. FASEB Journal, 2008, 22, 1120.13.	0.5	0
98	Novel Structural Determinants on SIRPα that Mediate Binding to CD47. Journal of Immunology, 2007, 179, 7741-7750.	0.8	27
99	Desmoglein-2: A Novel Regulator of Apoptosis in the Intestinal Epithelium. Molecular Biology of the Cell, 2007, 18, 4565-4578.	2.1	105
100	Pathobiology of Neutrophil Transepithelial Migration: Implications in Mediating Epithelial Injury. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 111-143.	22.4	95
101	JAM-A regulates permeability and inflammation in the intestine in vivo. Journal of Experimental Medicine, 2007, 204, 3067-3076.	8.5	423
102	A role of Desmoglein 2 in intestinal epithelial apoptosis FASEB Journal, 2007, 21, A192.	0.5	1
103	A unique role for the nonmuscle myosin IIA in regulation of epithelial apical junctions. FASEB Journal, 2007, 21, A763.	0.5	0
104	Structural requirements of SIRPα binding to CD47. FASEB Journal, 2007, 21, A132.	0.5	0
105	Neutrophil Transepithelial Migration and Epithelial Barrier Function in IBD: Potential Targets for Inhibiting Neutrophil Trafficking. Annals of the New York Academy of Sciences, 2006, 1072, 276-287.	3.8	106
106	Annexin I regulates epithelial cell migration by signaling through formyl peptide receptors. FASEB Journal, 2006, 20, A1093.	0.5	0
107	Junctional Adhesion Molecule A (JAMâ€A) signals through Afadin and Rap1. FASEB Journal, 2006, 20, A201.	0.5	0
108	Neutrophilâ€epithelial contact disrupts epithelial barrier function and is dependent on proteaseâ€activated receptors (PAR)â€1 and â€4. FASEB Journal, 2006, 20, A199.	0.5	0

#	Article	IF	CITATIONS
109	Junctional Adhesion Molecule 1 Regulates Epithelial Cell Morphology through Effects on \hat{l}^21 Integrins and Rap1 Activity. Journal of Biological Chemistry, 2005, 280, 11665-11674.	3.4	180
110	Neutrophil Migration across Tight Junctions Is Mediated by Adhesive Interactions between Epithelial Coxsackie and Adenovirus Receptor and a Junctional Adhesion Molecule-like Protein on Neutrophils. Molecular Biology of the Cell, 2005, 16, 2694-2703.	2.1	157
111	Interferonâ€Î³ induces internalization of epithelial tight junction proteins via a macropinocytosisâ€like process. FASEB Journal, 2005, 19, 923-933.	0.5	319
112	Coordinated Redistribution of Leukocyte LFA-1 and Endothelial Cell ICAM-1 Accompany Neutrophil Transmigration. Journal of Experimental Medicine, 2004, 200, 1571-1580.	8.5	207
113	Antiadhesive Role of Apical Decay-accelerating Factor (CD55) in Human Neutrophil Transmigration across Mucosal Epithelia. Journal of Experimental Medicine, 2003, 198, 999-1010.	8.5	73
114	Proinflammatory Cytokines Disrupt Epithelial Barrier Function by Apoptosis-Independent Mechanisms. Journal of Immunology, 2003, 171, 6164-6172.	0.8	793
115	Signaling through JAM-1 and $\hat{1}\pm v\hat{1}^23$ is required for the angiogenic action of bFGF: dissociation of the JAM-1 and $\hat{1}\pm v\hat{1}^23$ complex. Blood, 2003, 102, 2108-2114.	1.4	129
116	CD11b/CD18-Dependent Interactions of Neutrophils with Intestinal Epithelium Are Mediated by Fucosylated Proteoglycans. Journal of Immunology, 2002, 169, 5270-5278.	0.8	83
117	Neutrophil Transepithelial Migration: Evidence for Sequential, Contact-Dependent Signaling Events and Enhanced Paracellular Permeability Independent of Transjunctional Migration. Journal of Immunology, 2002, 169, 476-486.	0.8	79
118	Signal Regulatory Protein (SIRPÎ \pm), a Cellular Ligand for CD47, Regulates Neutrophil Transmigration. Journal of Biological Chemistry, 2002, 277, 10028-10036.	3.4	183
119	Neutrophil Transmigration in Inflammatory Bowel Disease Is Associated with Differential Expression of Epithelial Intercellular Junction Proteins. American Journal of Pathology, 2001, 159, 2001-2009.	3.8	427
120	A carbohydrate neoepitope that is up-regulated on human mononuclear leucocytes by neuraminidase treatment or by cellular activation. Immunology, 2001, 104, 185-197.	4.4	4
121	The Role of CD47 in Neutrophil Transmigration. Journal of Biological Chemistry, 2001, 276, 40156-40166.	3.4	174
122	CD11b/CD18-coated microspheres attach to E-selectin under flow. Journal of Leukocyte Biology, 2000, 67, 196-205.	3.3	37
123	Modulation of epithelial and endothelial paracellular permeability by leukocytes. Advanced Drug Delivery Reviews, 2000, 41, 315-328.	13.7	61
124	I. Neutrophil adhesive interactions with intestinal epithelium. American Journal of Physiology - Renal Physiology, 1997, 273, G763-G768.	3.4	39
125	Molecular events in neutrophil transepithelial migration. BioEssays, 1997, 19, 865-873.	2.5	72
126	Expression and Polarization of Intercellular Adhesion Molecule-1 on Human Intestinal Epithelia: Consequences for CD11b/CD18-Mediated Interactions with Neutrophils. Molecular Medicine, 1996, 2, 489-505.	4.4	153

#	Article	IF	CITATIONS
127	Receptors Involved in Carbohydrate Binding Modulate Intestinal Epithelial-Neutrophil Interactions. Journal of Biological Chemistry, 1995, 270, 10531-10539.	3.4	50