Xinchen Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3587996/xinchen-wang-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

266 389 130 72,572 h-index g-index citations papers 8.59 81,957 10.9 407 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
389	A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8, 76-80	27	8489
388	Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. <i>Chemical Society Reviews</i> , 2014 , 43, 5234-44	58.5	2515
387	Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 68-89	16.4	2479
386	Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. <i>Advanced Materials</i> , 2013 , 25, 2452-6	24	1859
385	Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1680-1	16.4	1418
384	Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catalysis, 2012, 2, 1596-160	613.1	1256
383	Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 441-4	16.4	1118
382	Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12868-84	16.4	1014
381	Metal-Containing Carbon Nitride Compounds: A New Functional Organic Metal Hybrid Material. <i>Advanced Materials</i> , 2009 , 21, 1609-1612	24	993
380	Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5339-43	16.4	949
379	Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. <i>Advanced Materials</i> , 2014 , 26, 805-9	24	885
378	Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. Journal of the American Chemical Society, 2009 , 131, 11658-9	16.4	877
377	Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. <i>Advanced Materials</i> , 2012 , 24, 5610-6	24	801
376	mpg-C(3)N(4)-Catalyzed selective oxidation of alcohols using O(2) and visible light. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16299-301	16.4	794
375	Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. <i>Energy and Environmental Science</i> , 2015 , 8, 3092-3108	35.4	769
374	Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. <i>Nature Communications</i> , 2012 , 3,	17.4	750
373	Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 2012 , 22, 8083		730

(2010-2017)

372	Metal-Free Photocatalyst for H Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13234-13242	16.4	717
371	Layered nanojunctions for hydrogen-evolution catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3621-5	16.4	713
370	Overall water splitting by Pt/g-CN photocatalysts without using sacrificial agents. <i>Chemical Science</i> , 2016 , 7, 3062-3066	9.4	689
369	Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. <i>Journal of the American Chemical Society</i> , 2009 , 131, 50-1	16.4	640
368	Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3183-7	16.4	624
367	Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. <i>Energy and Environmental Science</i> , 2011 , 4, 675-678	35.4	624
366	Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1735-8	16.4	609
365	Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. <i>Advanced Materials</i> , 2014 , 26, 4121-6	24	601
364	Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4940-4947	3.8	601
363	Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3356-9	16.4	586
362	From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. <i>Advanced Functional Materials</i> , 2013 , 23, 3661-3667	15.6	585
361	Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 657-60	16.4	552
360	A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10145-9	16.4	542
359	Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15712-15727	16.4	531
358	Tri-s-triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. <i>ACS Catalysis</i> , 2016 , 6, 3921-3931	13.1	531
357	Functional carbon nitride materials design strategies for electrochemical devices. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	526
356	Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8074	4 ¹ 6·4	505
355	Metal-free heterogeneous catalysis for sustainable chemistry. <i>ChemSusChem</i> , 2010 , 3, 169-80	8.3	500

354	Carbon-doped BN nanosheets for metal-free photoredox catalysis. <i>Nature Communications</i> , 2015 , 6, 76	98 7.4	482
353	Helical graphitic carbon nitrides with photocatalytic and optical activities. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11926-30	16.4	466
352	Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11814-8	16.4	460
351	Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1455-62	3.6	452
350	Multifunctional Metal-Organic Frameworks for Photocatalysis. <i>Small</i> , 2015 , 11, 3097-112	11	450
349	Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1034-8	16.4	446
348	Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids. <i>Chemistry of Materials</i> , 2010 , 22, 5119-5121	9.6	443
347	Photocatalytic activity of a hierarchically macro/mesoporous titania. <i>Langmuir</i> , 2005 , 21, 2552-9	4	414
346	One-step solvothermal synthesis of a carbon@TiO(2) dyade structure effectively promoting visible-light photocatalysis. <i>Advanced Materials</i> , 2010 , 22, 3317-21	24	411
345	Tri-s-triazine-Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1700008	24	407
344	Precise Formation of a Hollow Carbon Nitride Structure with a Janus Surface To Promote Water Splitting by Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11512-6	16.4	382
343	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13445-13449	16.4	379
342	A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. <i>Applied Catalysis B: Environmental</i> , 2016 , 192, 116-125	21.8	368
341	Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light. <i>Chemistry of Materials</i> , 2009 , 21, 4093-4095	9.6	358
340	Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. <i>Chemical Science</i> , 2012 , 3, 2170	9.4	356
339	Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13032		353
338	Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion. <i>Chemistry of Materials</i> , 2011 , 23, 4344-4348	9.6	348
337	Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic CH bond oxidation. <i>Chemical Science</i> , 2011 , 2, 446-450	9.4	345

(2016-2012)

336	Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis. <i>ACS Catalysis</i> , 2012 , 2, 940-948	13.1	337
335	Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. <i>Applied Catalysis B: Environmental</i> , 2015 , 162, 494-500	21.8	318
334	Sol processing of conjugated carbon nitride powders for thin-film fabrication. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6297-301	16.4	313
333	Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 353-358	8.3	312
332	Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6164-6175	16.4	312
331	Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2308-20	16.4	309
330	An Optimized and General Synthetic Strategy for Fabrication of Polymeric Carbon Nitride Nanoarchitectures. <i>Advanced Functional Materials</i> , 2013 , 23, 3008-3014	15.6	306
329	Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 13020-5	3.6	295
328	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3992-3996	16.4	293
327	Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 1-8	21.8	287
326	Layered Co(OH)2 Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 941-947	13.1	285
325	Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. <i>ChemSusChem</i> , 2010 , 3, 435-9	8.3	285
324	Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO2. <i>ACS Catalysis</i> , 2018 , 8, 4928-4936	13.1	279
323	Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 476-482	21.8	278
322	Black Phosphorus and Polymeric Carbon Nitride Heterostructure for Photoinduced Molecular Oxygen Activation. <i>Advanced Functional Materials</i> , 2018 , 28, 1705407	15.6	277
321	Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. <i>Energy and Environmental Science</i> , 2014 , 7, 1902	35.4	274
320	Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. <i>ChemSusChem</i> , 2011 , 4, 274-81	8.3	266
319	Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9202-6	16.4	265

318	Ionothermal Synthesis of Triazine-Heptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from "Sea Water". <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9372-9376	16.4	259
317	Making Metal?Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light. <i>ChemCatChem</i> , 2010 , 2, 834-838	5.2	257
316	Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2773-7	16.4	251
315	Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films. <i>Chemistry of Materials</i> , 2004 , 16, 1523-1530	9.6	245
314	Activation of n -le Transitions in Two-Dimensional Conjugated Polymers for Visible Light Photocatalysis. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 29981-29989	3.8	244
313	Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. <i>Chemical Science</i> , 2017 , 8, 5261-5274	9.4	238
312	Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. <i>Small</i> , 2015 , 11, 1215-21	11	235
311	Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 14656-60	3.6	235
310	Photocatalytic performance of $\frac{1}{2}$ $\frac{1}{12}$, and EGa2O3 for the destruction of volatile aromatic pollutants in air. <i>Journal of Catalysis</i> , 2007 , 250, 12-18	7-3	233
309	Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. <i>Chemical Science</i> , 2012 , 3, 443-446	9.4	232
308	Decorating CoP and Pt Nanoparticles on Graphitic Carbon Nitride Nanosheets to Promote Overall Water Splitting by Conjugated Polymers. <i>ChemSusChem</i> , 2017 , 10, 87-90	8.3	229
307	Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie B er die Vielzweckkatalyse hin zur nachhaltigen Chemie. <i>Angewandte Chemie</i> , 2012 , 124, 70-92	3.6	227
306	2D sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. <i>CheM</i> , 2019 , 5, 1632-1647	16.2	226
305	Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. Journal of Catalysis, 2014 , 310, 24-30	7.3	226
304	Co-Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light. <i>Angewandte Chemie</i> , 2012 , 124, 3237-3241	3.6	220
303	Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. <i>Nature Communications</i> , 2019 , 10, 2467	17.4	218
302	Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. <i>ACS Applied Materials & Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light.</i>	9.5	212
301	Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. <i>Chemical Communications</i> , 2015 , 51, 9706-9	5.8	207

(2006-2017)

300	Carbon Nitride Aerogels for the Photoredox Conversion of Water. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10905-10910	16.4	206
299	Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors. <i>Catalysis Science and Technology</i> , 2012 , 2, 1396	5.5	206
298	Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. <i>Chemical Communications</i> , 2010 , 46, 8932-4	5.8	206
297	ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 2369-74	10.3	205
296	Solvent-Free and Metal-Free Oxidation of Toluene Using O2 and g-C3N4 with Nanopores: Nanostructure Boosts the Catalytic Selectivity. <i>ACS Catalysis</i> , 2012 , 2, 2082-2086	13.1	198
295	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3433-3437	16.4	197
294	Eco-Friendly Photochemical Production of H2O2 through O2 Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements. <i>ACS Catalysis</i> , 2017 , 7, 2886-2895	13.1	191
293	Photocatalytic Oxygen Evolution from Functional Triazine-Based Polymers with Tunable Band Structures. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 470-474	16.4	191
292	A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions. <i>Angewandte Chemie</i> , 2012 , 124, 10292-10296	3.6	189
291	Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe O : All-Solid-State Z-Scheme System for Photocatalytic Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7102-7106	16.4	184
290	Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 413-419	21.8	177
289	Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. <i>Nature Catalysis</i> , 2020 , 3, 649-655	36.5	173
288	Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions. <i>Angewandte Chemie</i> , 2011 , 123, 5451-5455	3.6	172
287	The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation. <i>Journal of Catalysis</i> , 2008 , 255, 59-67	7.3	172
286	Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis. <i>Nanoscale</i> , 2015 , 7, 465-70	7.7	166
285	The effect of the pore-wall structure of carbon nitride on photocatalytic CO2 reduction under visible light. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15146-15151	13	166
284	Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light. <i>Applied Catalysis B: Environmental</i> , 2014 , 156-157, 122-127	21.8	165
283	Efficient decomposition of benzene over a beta-Ga2O3 photocatalyst under ambient conditions. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 5799-803	10.3	162

282	Probing of photocatalytic surface sites on SO42/ITiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 179, 339-347	4.7	162
281	Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 479-488	21.8	160
280	A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution. <i>Journal of Catalysis</i> , 2013 , 307, 246-253	7.3	157
279	Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. <i>Chemical Science</i> , 2013 , 4, 3244	9.4	157
278	Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2942	13	156
277	Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. <i>Chemical Communications</i> , 2014 , 50, 4338-40	5.8	153
276	Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 234-241	21.8	152
275	Electro- and Photochemical Water Oxidation on Ligand-free Co3O4Nanoparticles with Tunable Sizes. <i>ACS Catalysis</i> , 2013 , 3, 383-388	13.1	149
274	A simple and general method for the synthesis of multicomponent Na2V6O16.3H2O single-crystal nanobelts. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3422-3	16.4	149
273	Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymerization. <i>Angewandte Chemie</i> , 2010 , 122, 451-454	3.6	146
272	A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. <i>Chemical Communications</i> , 2015 , 51, 15	1 <i>7</i> 5. 9	145
271	A mesoporous Pt/TiO2 nanoarchitecture with catalytic and photocatalytic functions. <i>Chemistry - A European Journal</i> , 2005 , 11, 2997-3004	4.8	144
270	Aerobic Oxidative Coupling of Amines by Carbon Nitride Photocatalysis with Visible Light. <i>Angewandte Chemie</i> , 2011 , 123, 683-686	3.6	142
269	mpg-C3N4 as a solid base catalyst for Knoevenagel condensations and transesterification reactions. <i>Catalysis Science and Technology</i> , 2012 , 2, 1005	5.5	138
268	Nanostructure Engineering and Doping of Conjugated Carbon Nitride Semiconductors for Hydrogen Photosynthesis. <i>Angewandte Chemie</i> , 2013 , 125, 1779-1782	3.6	137
267	Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis. <i>Energy and Environmental Science</i> , 2009 , 2, 872	35.4	136
266	Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. <i>Chemical Science</i> , 2017 , 8, 5506-5511	9.4	134
265	Carbon Vacancies in a Melon Polymeric Matrix Promote Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2019, 58, 1134-1137	16.4	133

(2012-2017)

264	Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8231-8235	16.4	132
263	Reducing the Exciton Binding Energy of Donor-Acceptor-Based Conjugated Polymers to Promote Charge-Induced Reactions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10236-10240	16.4	132
262	Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6627-6631	16.4	131
261	Polymeres graphitisches Kohlenstoffnitrid fildie nachhaltige Photoredoxkatalyse. <i>Angewandte Chemie</i> , 2015 , 127, 13060-13077	3.6	130
260	Biomimetic Donor-Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8729-8733	16.4	130
259	Water oxidation electrocatalysis by a zeolitic imidazolate framework. <i>Nanoscale</i> , 2014 , 6, 9930-4	7.7	128
258	Photocatalytic CO conversion by polymeric carbon nitrides. <i>Chemical Communications</i> , 2018 , 54, 5674-5	6 § .8	126
257	The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. <i>Chemical Communications</i> , 2015 , 51, 17467-70	5.8	124
256	Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. <i>Energy and Environmental Science</i> , 2018 , 11, 294-298	35.4	124
255	Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1008-13	4.8	123
254	N-doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. <i>Chemosphere</i> , 2008 , 72, 414-21	8.4	123
253	Degradation of benzene over a zinc germanate photocatalyst under ambient conditions. <i>Environmental Science & Environmental Sc</i>	10.3	117
252	Highly active tantalum(V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4295		116
251	Cobalt Imidazolate Metal©rganic Frameworks Photosplit CO2 under Mild Reaction Conditions. <i>Angewandte Chemie</i> , 2014 , 126, 1052-1056	3.6	114
250	MetalBrganic frameworks for solar energy conversion by photoredox catalysis. <i>Coordination Chemistry Reviews</i> , 2018 , 373, 83-115	23.2	113
249	An ordered cubic Im3m mesoporous Cr-TiO2 visible light photocatalyst. <i>Chemical Communications</i> , 2006 , 2717-9	5.8	113
248	Metal-Free Dehydrogenation of N-Heterocycles by Ternary h-BCN Nanosheets with Visible Light. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5487-5491	16.4	112
247	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Visible Light Photoinitiator for Radical Polymerization. <i>ACS Macro Letters</i> , 2012 , 1, 546-549	6.6	110

246	InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 193, 213-221	4.7	110
245	Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 3666-3674	3.3	110
244	Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2014 , 152-153, 383-389	21.8	109
243	Substantial Cyano-Substituted Fully sp2-Carbon-Linked Framework: Metal-Free Approach and Visible-Light-Driven Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2017 , 27, 1703146	15.6	109
242	Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis. <i>Nano Energy</i> , 2017 , 42, 58-68	17.1	108
241	Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. <i>New Journal of Chemistry</i> , 2004 , 28, 1027	3.6	108
240	Sol Processing of Conjugated Carbon Nitride Powders for Thin-Film Fabrication. <i>Angewandte Chemie</i> , 2015 , 127, 6395-6399	3.6	106
239	Layering MoS2 on soft hollow g-C3N4 nanostructures for photocatalytic hydrogen evolution. <i>Applied Catalysis A: General</i> , 2016 , 521, 2-8	5.1	106
238	Helical Graphitic Carbon Nitrides with Photocatalytic and Optical Activities. <i>Angewandte Chemie</i> , 2014 , 126, 12120-12124	3.6	104
237	A Unique Ternary Semiconductor-(Semiconductor/Metal) Nano-Architecture for Efficient Photocatalytic Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11495-500	16.4	104
236	Recent advances in visible light-driven water oxidation and reduction in suspension systems. <i>Materials Today</i> , 2018 , 21, 897-924	21.8	103
235	Conjugated donor-acceptor polymer photocatalysts with electron-output Bentacles For efficient hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 596-603	21.8	101
234	Photochemically Mediated Atom Transfer Radical Polymerization Using Polymeric Semiconductor Mesoporous Graphitic Carbon Nitride. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 675-681	2.6	99
233	Layered Nanojunctions for Hydrogen-Evolution Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 3709-3713	3.6	99
232	Heteroatom Dopants Promote Two-Electron O Reduction for Photocatalytic Production of H O on Polymeric Carbon Nitride. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16209-16217	16.4	98
231	Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2012 , 124, 11984-11988	3.6	98
230	Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors. <i>ChemSusChem</i> , 2015 , 8, 1189-96	8.3	97
229	Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light. <i>ChemSusChem</i> , 2013 , 6, 2074-8	8.3	94

228	Rapid template-free synthesis and photocatalytic performance of visible light-activated SnNb2O6 nanosheets. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2670-2678		94	
227	Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water. <i>ChemSusChem</i> , 2008 , 1, 1011-9	8.3	94	
226	Ultrafine Cobalt Catalysts on Covalent Carbon Nitride Frameworks for Oxygenic Photosynthesis. <i>ACS Applied Materials & District Materia</i>	9.5	93	
225	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie</i> , 2017 , 129, 13630-1363	43.6	91	
224	Carbon Nitride-Catalyzed Photoredox C?C Bond Formation with N-Aryltetrahydroisoquinolines. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 1909-1913	5.6	90	
223	Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light. <i>ChemSusChem</i> , 2014 , 7, 738-42	8.3	89	
222	Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution. <i>ChemSusChem</i> , 2015 , 8, 1404-10	8.3	88	
221	Surface Modification of Carbon Nitride Polymers by CoreBhell Nickel/Nickel Oxide Cocatalysts for Hydrogen Evolution Photocatalysis. <i>ChemCatChem</i> , 2015 , 7, 2864-2870	5.2	87	
220	Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9749-9753	16.4	87	
219	Solar Water Splitting at ⊞600 nm: A Step Closer to Sustainable Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7230-2	16.4	87	
218	Boron- and Fluorine-Containing Mesoporous Carbon Nitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation. <i>Angewandte Chemie</i> , 2010 , 122, 3428-3431	3.6	87	
217	Konjugierte Polymere: Katalysatoren fildie photokatalytische Wasserstoffentwicklung. <i>Angewandte Chemie</i> , 2016 , 128, 15940-15956	3.6	86	
216	Metal-Free Boron-Containing Heterogeneous Catalysts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15506-15518	16.4	86	
215	Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 321-328	3.3	86	
214	Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 246-255	21.8	86	
213	Polymeric Carbon Nitride with Localized Aluminum Coordination Sites as a Durable and Efficient Photocatalyst for Visible Light Utilization. <i>ACS Catalysis</i> , 2018 , 8, 4241-4256	13.1	84	
212	Template Synthesis of Hollow Metal Oxide Fibers with Hierarchical Architecture. <i>Chemistry of Materials</i> , 2006 , 18, 4700-4705	9.6	84	
211	Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn S Nanosheets for Photocatalytic CO Reduction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18529-18534	4.8	82	

210	Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17946-17950	13	81
209	Photochemical Construction of Carbonitride Structures for Red-Light Redox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8674-8677	16.4	80
208	Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants. <i>Materials Letters</i> , 2015 , 161, 197-200	3.3	78
207	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 4050-4054	3.6	77
206	Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization. <i>Chemical Communications</i> , 2018 , 54, 2475-2478	5.8	77
205	Sono- and Photochemical Routes for the Formation of Highly Dispersed Gold Nanoclusters in Mesoporous Titania Films. <i>Advanced Functional Materials</i> , 2004 , 14, 1178-1183	15.6	77
204	Cobalt sulfide modified graphitic carbon nitride semiconductor for solar hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 11873-11879	6.7	76
203	Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method. <i>Applied Catalysis B: Environmental</i> , 2008 , 77, 264-271	21.8	76
202	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14950-14954	16.4	74
201	Modulating Crystallinity of Graphitic Carbon Nitride for Photocatalytic Oxidation of Alcohols. <i>ChemSusChem</i> , 2017 , 10, 4451-4456	8.3	72
200	Three-Dimensionally Ordered Mesoporous Molecular-Sieve Films as Solid Superacid Photocatalysts. <i>Advanced Materials</i> , 2005 , 17, 99-102	24	72
199	Functional Conjugated Polymers for CO Reduction Using Visible Light. <i>Chemistry - A European Journal</i> , 2018 , 24, 17454-17458	4.8	72
198	Enhancing Visible-Light Hydrogen Evolution Performance of Crystalline Carbon Nitride by Defect Engineering. <i>ChemSusChem</i> , 2019 , 12, 3257-3262	8.3	66
197	Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications. <i>Chemistry of Materials</i> , 2006 , 18, 3774-3779	9.6	65
196	Vinylene-Linked Covalent Organic Frameworks (COFs) with Symmetry-Tuned Polarity and Photocatalytic Activity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23845-23853	16.4	64
195	A robust three-dimensional mesoporous Ag/TiO2 nanohybrid film. <i>Chemical Communications</i> , 2005 , 22	62 5 .\$	63
194	Selected-Control Synthesis of NaV6O15 and Na2V6O16BH2O Single-Crystalline Nanowires. <i>Crystal Growth and Design</i> , 2005 , 5, 969-974	3.5	63
193	Photocatalysis: an overview of recent developments and technological advancements. <i>Science China Chemistry</i> , 2020 , 63, 149-181	7.9	63

(2010-2008)

192	Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. <i>Chemical Physics Letters</i> , 2008 , 457, 134-136	2.5	62
191	A Low-Temperature and Mild Solvothermal Route to the Synthesis of Wurtzite-Type ZnS With Single-Crystalline Nanoplate-like Morphology. <i>Crystal Growth and Design</i> , 2005 , 5, 1761-1765	3.5	62
190	Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. <i>ChemSusChem</i> , 2014 , 7, 1547-50	8.3	57
189	Advances in photocatalysis in China. <i>Chinese Journal of Catalysis</i> , 2013 , 34, 524-535	11.3	57
188	Ionic Liquid Co-catalyzed Artificial Photosynthesis of CO. Scientific Reports, 2013, 3,	4.9	57
187	A perovskite oxide LaCoO cocatalyst for efficient photocatalytic reduction of CO with visible light. <i>Chemical Communications</i> , 2018 , 54, 2272-2275	5.8	56
186	Facile fabrication and characterization of hierarchically porous calcium carbonate microspheres. <i>Chemical Communications</i> , 2004 , 2414-5	5.8	56
185	Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. <i>Angewandte Chemie</i> , 2016 , 128, 9348-9352	3.6	56
184	A Borocarbonitride Ceramic Aerogel for Photoredox Catalysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6033-6037	16.4	55
183	A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO Reduction. <i>ChemSusChem</i> , 2019 , 12, 4493-4499	8.3	55
182	Precise Formation of a Hollow Carbon Nitride Structure with a Janus Surface To Promote Water Splitting by Photoredox Catalysis. <i>Angewandte Chemie</i> , 2016 , 128, 11684-11688	3.6	54
181	Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. <i>Nanoscale</i> , 2017 , 9, 17737-17742	7.7	54
180	Photocatalytic Oxygen Evolution from Functional Triazine-Based Polymers with Tunable Band Structures. <i>Angewandte Chemie</i> , 2018 , 130, 479-483	3.6	54
179	Cobalt manganese spinel as an effective cocatalyst for photocatalytic water oxidation. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 886-894	21.8	54
178	Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications. <i>Small</i> , 2018 , 14, e1800633	11	53
177	Synthesis of Polymeric Carbon Nitride Films with Adhesive Interfaces for Solar Water Splitting Devices. <i>ACS Catalysis</i> , 2018 , 8, 8774-8780	13.1	53
176	Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots. <i>Angewandte Chemie</i> , 2016 , 128, 2823-2827	3.6	53
175	Visible light-sensitive ZnGe oxynitride catalysts for the decomposition of organic pollutants in water. <i>Environmental Science & Environmental Science</i>	10.3	52

174	Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. <i>Angewandte Chemie</i> , 2019 , 131, 6225-6236	3.6	52
173	A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. <i>ChemSusChem</i> , 2012 , 5, 642-6	8.3	51
172	Solvated Electrons for Photochemistry Syntheses Using Conjugated Carbon Nitride Polymers. <i>ACS Catalysis</i> , 2019 , 9, 2949-2955	13.1	50
171	Photocatalytic water oxidation by layered Co/h-BCN hybrids. <i>Science China Materials</i> , 2015 , 58, 867-876	7.1	50
170	Facile synthesis and enhanced visible-light photoactivity of DyVO 4/g-C 3 N 4 I composite semiconductors. <i>Applied Catalysis B: Environmental</i> , 2016 , 183, 426-432	21.8	50
169	Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI). <i>Molecules</i> , 2017 , 22,	4.8	50
168	Ionothermal Synthesis of TriazineHeptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from Bea Water Angewandte Chemie, 2018, 130, 9516-9.	526	49
167	Design of a Unique Energy-Band Structure and Morphology in a Carbon Nitride Photocatalyst for Improved Charge Separation and Hydrogen Production. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 519-530	8.3	49
166	Black Phosphorus and Carbon Nitride Hybrid Photocatalysts for Photoredox Reactions. <i>Advanced Functional Materials</i> , 2020 , 30, 2002021	15.6	47
165	Photocatalytic decomposition of benzene by porous nanocrystalline ZnGa2O4 with a high surface area. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 5947-51	10.3	47
164	Covalent Organic Framework Hosting Metalloporphyrin-Based Carbon Dots for Visible-Light-Driven Selective CO2 Reduction. <i>Advanced Functional Materials</i> , 2020 , 30, 2002654	15.6	46
163	Template-Free Synthesis of Hollow G-C3N4 Polymer with Vesicle Structure for Enhanced Photocatalytic Water Splitting. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 3786-3793	3.8	46
162	Imidazolatsysteme zur CO2-Abscheidung und photochemischen Reduktion. <i>Angewandte Chemie</i> , 2016 , 128, 2352-2364	3.6	46
161	Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations. <i>Angewandte Chemie</i> , 2017 , 129, 6727-6731	3.6	45
160	Dyadic promotion of photocatalytic aerobic oxidation via the MottBchottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. <i>Energy and Environmental Science</i> , 2019 , 12, 418-426	35.4	45
159	Carbon Nitride Aerogels for the Photoredox Conversion of Water. <i>Angewandte Chemie</i> , 2017 , 129, 1104	.5 <u>.</u> 610.	54 ₅
158	Nanostructuring cadmium germanate catalysts for photocatalytic oxidation of benzene at ambient conditions. <i>Langmuir</i> , 2009 , 25, 8313-9	4	45
157	Preparation of a highly active nanocrystalline TiO2 photocatalyst from titanium oxo cluster precursor. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 2584-2590	3.3	45

(2020-2017)

156	Ni-Co layered double hydroxides cocatalyst for sustainable oxygen photosynthesis. <i>Applied Catalysis B: Environmental</i> , 2017 , 210, 454-461	21.8	44
155	Photocarving nitrogen vacancies in a polymeric carbon nitride for metal-free oxygen synthesis. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117794	21.8	44
154	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 3471-3475	3.6	44
153	Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe2O3: All-Solid-State Z-Scheme System for Photocatalytic Overall Water Splitting. <i>Angewandte Chemie</i> , 2019 , 131, 7176-7180	3.6	43
152	Photocatalytic degradation of benzene in gas phase by nanostructured BiPO4 catalysts. <i>Progress in Natural Science: Materials International</i> , 2012 , 22, 644-653	3.6	43
151	Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. <i>Applied Catalysis B: Environmental</i> , 2019 , 251, 102-111	21.8	41
150	Oxysulfide Semiconductors for Photocatalytic Overall Water Splitting with Visible Light. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15580-15582	16.4	41
149	Heterogeneous photoredox flow chemistry for the scalable organosynthesis of fine chemicals. <i>Nature Communications</i> , 2020 , 11, 1239	17.4	40
148	Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation. <i>Dalton Transactions</i> , 2009 , 10055-62	4.3	40
147	Meso- and macro-porous Pd/CexZr1⊠O2 as novel oxidation catalysts. <i>Journal of Materials Chemistry</i> , 2005 , 15, 2193		40
147		13	39
	Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light		
146	Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16179-16188 Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. <i>Angewandte</i>		39
146	Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16179-16188 Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. <i>Angewandte Chemie</i> , 2017 , 129, 8343-8347 Combination of polyoxotantalate and metal sulfide: A new-type noble-metal-free binary photocatalyst Na8Ta6O19/Cd0.7Zn0.3S for highly efficient visible-light-driven H2 evolution.	3.6	39 38 38
146 145 144	Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16179-16188 Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. <i>Angewandte Chemie</i> , 2017 , 129, 8343-8347 Combination of polyoxotantalate and metal sulfide: A new-type noble-metal-free binary photocatalyst Na8Ta6O19/Cd0.7Zn0.3S for highly efficient visible-light-driven H2 evolution. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 423-429 A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen	3.6	39 38 38
146 145 144	Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16179-16188 Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. <i>Angewandte Chemie</i> , 2017 , 129, 8343-8347 Combination of polyoxotantalate and metal sulfide: A new-type noble-metal-free binary photocatalyst Na8Ta6O19/Cd0.7Zn0.3S for highly efficient visible-light-driven H2 evolution. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 423-429 A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119637	3.6 21.8 21.8	39 38 38 38
146 145 144 143	Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16179-16188 Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. <i>Angewandte Chemie</i> , 2017 , 129, 8343-8347 Combination of polyoxotantalate and metal sulfide: A new-type noble-metal-free binary photocatalyst Na8Ta6O19/Cd0.7Zn0.3S for highly efficient visible-light-driven H2 evolution. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 423-429 A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119637 LaOCl-Coupled Polymeric Carbon Nitride for Overall Water Splitting through a One-Photon Excitation Pathway. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20919-20923	3.6 21.8 21.8	39 38 38 38 37

138	Direct hydroxylation of benzene to phenol on h-BCN nanosheets in the presence of FeCl3 and H2O2 under visible light. <i>Catalysis Today</i> , 2019 , 324, 73-82	5.3	34
137	Synthesis of Ferrocene-Modified Carbon Nitride Photocatalysts by Surface Amidation Reaction for Phenol Synthesis. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 498-506	4.9	34
136	Carbon Vacancies in a Melon Polymeric Matrix Promote Photocatalytic Carbon Dioxide Conversion. <i>Angewandte Chemie</i> , 2019 , 131, 1146-1149	3.6	34
135	Diverse Polymeric Carbon Nitride-Based Semiconductors for Photocatalysis and Variations 2020 , 2, 975	5-980	33
134	Structure-Mediated Charge Separation in Boron Carbon Nitride for Enhanced Photocatalytic Oxidation of Alcohol. <i>ChemSusChem</i> , 2018 , 11, 3949-3955	8.3	33
133	Assembly of protonated mesoporous carbon nitrides with co-catalytic [MoS] clusters for photocatalytic hydrogen production. <i>Chemical Communications</i> , 2017 , 53, 13221-13224	5.8	33
132	Water dispersible, highly graphitic and nitrogen-doped carbon nanobubbles. Small, 2013, 9, 4135-41	11	32
131	Promoting effects of H2 on photooxidation of volatile organic pollutants over Pt/TiO2. <i>New Journal of Chemistry</i> , 2005 , 29, 1514	3.6	32
130	Metalloporphyrin-based covalent organic frameworks composed of the electron donor-acceptor dyads for visible-light-driven selective CO2 reduction. <i>Science China Chemistry</i> , 2020 , 63, 1289-1294	7.9	32
129	Se-modified polymeric carbon nitride nanosheets with improved photocatalytic activities. <i>Journal of Catalysis</i> , 2019 , 375, 104-112	7.3	31
128	Phosphorylation of Polymeric Carbon Nitride Photoanodes with Increased Surface Valence Electrons for Solar Water Splitting. <i>ChemSusChem</i> , 2019 , 12, 2605-2608	8.3	31
127	Versatile Synthesis of Hollow Metal Sulfides via Reverse Cation Exchange Reactions for Photocatalytic CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25055-25062	16.4	31
126	Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl2 eutectics. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21227-21232	13	30
125	Integration of [(Co(bpy)] + electron mediator with heterogeneous photocatalysts for CO conversion. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2468-74	4.5	30
124	Gradient sulfur doping along polymeric carbon nitride films as visible light photoanodes for the enhanced water oxidation. <i>Applied Catalysis B: Environmental</i> , 2020 , 268, 118398	21.8	30
123	Hydrogen reduction treatment of boron carbon nitrides for photocatalytic selective oxidation of alcohols. <i>Applied Catalysis B: Environmental</i> , 2020 , 276, 118916	21.8	29
122	Metal-Free Dehydrogenation of N-Heterocycles by Ternary h-BCN Nanosheets with Visible Light. <i>Angewandte Chemie</i> , 2018 , 130, 5585-5589	3.6	29
121	Synthesis of functionalized mesoporous TiO2 molecular sieves and their application in photocatalysis. <i>Microporous and Mesoporous Materials</i> , 2008 , 110, 543-552	5.3	29

(2020-2016)

120	Microwave-assisted fabrication of porous hematite photoanodes for efficient solar water splitting. <i>Chemical Communications</i> , 2016 , 52, 6888-91	5.8	29
119	Merging Surface Organometallic Chemistry with Graphitic Carbon Nitride Photocatalysis for CO2 Photofixation. <i>ChemCatChem</i> , 2015 , 7, 1422-1423	5.2	28
118	Cobalt-based cubane molecular co-catalysts for photocatalytic water oxidation by polymeric carbon nitrides. <i>Applied Catalysis B: Environmental</i> , 2018 , 238, 664-671	21.8	28
117	Photocatalytic Oxygenation and Deoxygenation Transformations over BCN Nanosheets. <i>ACS Catalysis</i> , 2019 , 9, 8068-8072	13.1	28
116	The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production. <i>Research on Chemical Intermediates</i> , 2017 , 43, 5137-5152	2.8	28
115	Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide. <i>Materials Chemistry and Physics</i> , 2006 , 98, 267-272	4.4	28
114	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination <i>Chemical Reviews</i> , 2022 ,	68.1	27
113	Water-Soluble and Low-Toxic Ionic Polymer Dots as Invisible Security Ink for MultiStage Information Encryption. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 1480-1486	9.5	27
112	New two-dimensional porous graphitic carbon nitride nanosheets for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. <i>Catalysis Science and Technology</i> , 2018 , 8, 3846-3852	5.5	27
111	Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 2089-2094	11.3	26
110	Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14690-14696	13	25
109	On-Surface Polymerization of In-Plane Highly Ordered Carbon Nitride Nanosheets toward Photocatalytic Mineralization of Mercaptan Gas. <i>Advanced Materials</i> , 2021 , 33, e2101466	24	25
108	Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18695-18700	16.4	24
107	Metal-free Semiconductor Photocatalysis for sp2 CH Functionalization with Molecular Oxygen. <i>ChemCatChem</i> , 2019 , 11, 703-706	5.2	24
106	Distorted carbon nitride nanosheets with activated nIm transition and preferred textural properties for photocatalytic CO2 reduction. <i>Journal of Catalysis</i> , 2021 , 402, 166-176	7.3	23
105	Photocatalytic overall water splitting by spatially-separated Rh and RhOx cocatalysts on polymeric carbon nitride nanosheets. <i>Journal of Catalysis</i> , 2019 , 379, 129-137	7.3	22
104	Molten salt assisted assembly growth of atomically thin boron carbon nitride nanosheets for photocatalytic H evolution. <i>Chemical Communications</i> , 2020 , 56, 2558-2561	5.8	22
103	Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation. <i>Journal of Catalysis</i> , 2020 , 389, 636-645	7.3	22

102	A Fully Coplanar Donor-Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16355-16359	16.4	22
101	Cobalt Nitride Anchored on Nitrogen-Rich Carbons for Efficient Carbon Dioxide Reduction with Visible Light. <i>Applied Catalysis B: Environmental</i> , 2021 , 280, 119454	21.8	22
100	Photochemical Construction of Carbonitride Structures for Red-Light Redox Catalysis. <i>Angewandte Chemie</i> , 2018 , 130, 8810-8813	3.6	22
99	Polymeric Donor-Acceptor Heterostructures for Enhanced Photocatalytic H Evolution without Using Pt Cocatalysts. <i>Chemistry - A European Journal</i> , 2019 , 25, 6102-6107	4.8	21
98	A TaON nano-photocatalyst with low surface reduction defects for effective mineralization of chlorophenols under visible light irradiation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12742-7	3.6	21
97	Molecular TriazineHeptazine Junctions Promoting Exciton Dissociation for Overall Water Splitting with Visible Light. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 9818-9826	3.8	21
96	Reducing the Exciton Binding Energy of Donor Acceptor-Based Conjugated Polymers to Promote Charge-Induced Reactions. <i>Angewandte Chemie</i> , 2019 , 131, 10342-10346	3.6	20
95	Solare Wasserspaltung bei ⊞600 nm: ein weiterer Schritt hin zu nachhaltiger Wasserstofferzeugung. <i>Angewandte Chemie</i> , 2015 , 127, 7336-7338	3.6	20
94	Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2012 , 28, 2336-2342	3.8	20
93	Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. <i>Chemical Communications</i> , 2019 , 55, 7756-7759	5.8	19
92	Efficient development of Type-II TiO2 heterojunction using electrochemical approach for an enhanced photoelectrochemical water splitting performance. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 43	8 ⁻¹ 445	19
91	Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. <i>Angewandte Chemie</i> , 2018 , 130, 9897-9901	3.6	19
90	Biomimetic Donor Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. <i>Angewandte Chemie</i> , 2018 , 130, 8865-8869	3.6	18
89	Metalated carbon nitrides as base catalysts for efficient catalytic hydrolysis of carbonyl sulfide. <i>Chemical Communications</i> , 2019 , 55, 11259-11262	5.8	18
88	Photocatalytic CO2 Reduction Using Ni2P Nanosheets. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 36, 1906014-0	3.8	18
87	Metallfreie Bor-haltige Heterogenkatalysatoren. <i>Angewandte Chemie</i> , 2017 , 129, 15712-15724	3.6	17
86	Chemical Synthesis and Applications of Graphitic Carbon Nitride. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 1865-1876	3.8	16
85	Nanoscale boron carbonitride semiconductors for photoredox catalysis. <i>Nanoscale</i> , 2020 , 12, 3593-360-	4 7.7	16

(2020-2020)

84	Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13059-13064	13	15	
83	In Situ Synthesis of Phosphorus-Doped Polymeric Carbon Nitride Sheets for Photoelectrochemical Water Oxidation. <i>Solar Rrl</i> , 2020 , 4, 2000168	7.1	14	
82	Encapsulation of Cobalt Oxide into Metal-Organic Frameworks for an Improved Photocatalytic CO Reduction. <i>ChemSusChem</i> , 2021 , 14, 946-951	8.3	14	
81	Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids. <i>ACS Catalysis</i> , 2021 , 11, 3040-3047	13.1	14	
80	Modulation of Polymeric Carbon Nitrides through Supramolecular Preorganization for Efficient Photocatalytic Hydrogen Generation. <i>ChemSusChem</i> , 2019 , 12, 3320-3325	8.3	13	
79	LiCl as Phase-Transfer Catalysts to Synthesize Thin Co P Nanosheets for Oxygen Evolution Reaction. <i>ChemSusChem</i> , 2019 , 12, 1911-1915	8.3	13	
78	Efficient photoelectrochemical hydrogen production over p-Si nanowire arrays coupled with molybdenumBulfur clusters. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 2832-2838	6.7	13	
77	Molecular Junctions on Polymeric Carbon Nitrides with Enhanced Photocatalytic Performance. <i>ChemSusChem</i> , 2020 , 13, 888-892	8.3	13	
76	Photochemical Construction of Nitrogen-Containing Nanocarbons for Carbon Dioxide Photoreduction. <i>ACS Catalysis</i> , 2020 , 10, 12706-12715	13.1	13	
75	A CO photoreduction heterogeneous cobalt-based cocatalyst constructed via in situ electrostatic adsorption deposition. <i>Chemical Communications</i> , 2019 , 55, 3903-3906	5.8	13	
74	Edeficient pyridine ring-incorporated carbon nitride polymers for photocatalytic H2 evolution and CO2 fixation. <i>Research on Chemical Intermediates</i> , 2021 , 47, 15-27	2.8	13	
73	Tuning Crystallinity and Surface Hydrophobicity of a Cobalt Phosphide Cocatalyst to Boost CO Photoreduction Performance. <i>ChemSusChem</i> , 2021 , 14, 1302-1307	8.3	13	
72	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie</i> , 2019 , 131, 15092-15096	3.6	12	
71	A 3D hybrid praseodymium-antimony-oxochloride compound: single-crystal-to-single-crystal transformation and photocatalytic properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 15396-403	4.8	12	
70	Photoelectrochemical conversion of CO2 into HCOOH using a polymeric carbon nitride photoanode and Cu cathode. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5812-5817	5.8	12	
69	Nonaggregated Zinc Phthalocyanine in Mesoporous Nanocrystalline TiO2 Thin Films. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1414-1418	4.8	11	
68	Fully Condensed Poly (Triazine Imide) Crystals: Extended Econjugation and Structural Defects for Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	11	
67	Vinylene-Linked Covalent Organic Frameworks (COFs) with Symmetry-Tuned Polarity and Photocatalytic Activity. <i>Angewandte Chemie</i> , 2020 , 132, 24053-24061	3.6	11	

66	Efficient aerobic oxidation of alcohols to esters by acidified carbon nitride photocatalysts. <i>Journal of Catalysis</i> , 2021 , 393, 116-125	7-3	11
65	Asymmetric Acceptor-Donor-Acceptor Polymers with Fast Charge Carrier Transfer for Solar Hydrogen Production. <i>Chemistry - A European Journal</i> , 2021 , 27, 939-943	4.8	11
64	Biomimetic donor-acceptor motifs in carbon nitrides: Enhancing red-light photocatalytic selective oxidation by rational surface engineering. <i>Applied Catalysis B: Environmental</i> , 2021 , 294, 120259	21.8	11
63	Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities. <i>ACS Catalysis</i> ,13463-13471	13.1	10
62	Carbon Nitride for the Selective Oxidation of Aromatic Alcohols in Water under Visible Light. <i>ChemSusChem</i> , 2013 , 6, 2024-2024	8.3	9
61	Insight into Photoactive Sites for the Ethylene Oxidation on Commercial HZSM-5 Zeolites with Iron Impurities by UV Raman, X-ray Absorption Fine Structure, and Electron Paramagnetic Resonance Spectroscopies. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5195-5202	3.8	9
60	Application of photoluminescence spectroscopy to elucidate photocatalytic reactions at the molecular level. <i>Research on Chemical Intermediates</i> , 2020 , 46, 4325-4344	2.8	9
59	Photoelectron Transfer Mediated by the Interfacial Electron Effects for Boosting Visible-Light-Driven CO2 Reduction. <i>ACS Catalysis</i> , 2022 , 12, 3550-3557	13.1	9
58	Interfacial engineering of lattice coherency at ZnO-ZnS photocatalytic heterojunctions. <i>Chem Catalysis</i> , 2022 , 2, 125-139		8
57	Fluorescent Se-modified carbon nitride nanosheets as biomimetic catalases for free-radical scavenging. <i>Chemical Communications</i> , 2020 , 56, 916-919	5.8	8
56	Cobalt Phosphide Cocatalysts Coated with Porous N-doped Carbon Layers for Photocatalytic CO2 Reduction. <i>ChemCatChem</i> , 2021 , 13, 3581-3587	5.2	8
55	Coating Polymeric Carbon Nitride on Conductive Carbon Cloth to Promote Charge Separation for Photocatalytic Water Splitting. <i>ChemSusChem</i> , 2021 , 14, 3821-3824	8.3	8
54	Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light. <i>Applied Catalysis B: Environmental</i> , 2021 , 296, 120369	21.8	8
53	Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts <i>Nature Communications</i> , 2022 , 13, 2230	17.4	8
52	Heteroatom Dopants Promote Two-Electron O2 Reduction for Photocatalytic Production of H2O2 on Polymeric Carbon Nitride. <i>Angewandte Chemie</i> , 2020 , 132, 16343-16351	3.6	7
51	Regular mesoporous nanoarchitectures with Fe-doped semiconducting framework and enhanced photocatalytic activity. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 5983-5	3.6	7
50	Transformation of Covalent Organic Frameworks from N-Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7
49	N-Rich Carbon Catalysts with Economic Feasibility for the Selective Oxidation of Hydrogen Sulfide to Sulfur. <i>Environmental Science & Enp.; Technology</i> , 2020 , 54, 12621-12630	10.3	7

48	Ceramic boron carbonitrides for unlocking organic halides with visible light. <i>Chemical Science</i> , 2021 , 12, 6323-6332	9.4	7
47	Visible Light-Responsive Photocatalysts From TiO2 to Carbon Nitrides and Boron Carbon Nitride. <i>Advances in Inorganic Chemistry</i> , 2018 , 72, 49-92	2.1	7
46	Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. <i>Angewandte Chemie</i> , 2020 , 132, 18854-18859	3.6	6
45	Multimetallic Oxynitrides Nanoparticles for a New Generation of Photocatalysts. <i>Chemistry - A European Journal</i> , 2019 , 25, 16676	4.8	6
44	Phosphorene-based heterostructured photocatalysts. <i>Engineering</i> , 2021 ,	9.7	6
43	Tailored poly-heptazine units in carbon nitride for activating peroxymonosulfate to degrade organic contaminants with visible light. <i>Applied Catalysis B: Environmental</i> , 2022 , 311, 121341	21.8	6
42	Molecular pore-wall engineering of mesozeolitic conjugated polymers for photoredox hydrogen production with visible light. <i>Journal of Energy Chemistry</i> , 2017 , 26, 87-92	12	5
41	Metalized Carbon Nitrides for Efficient Catalytic Functionalization of CO2. ACS Catalysis, 2022, 12, 1797	'- 180 8	5
40	Role of Dopants on the Local Electronic Structure of Polymeric Carbon Nitride Photocatalysts <i>Small Methods</i> , 2021 , 5, e2000707	12.8	5
39	Roles of Metal-Free Materials in Photoelectrodes for Water Splitting. <i>Accounts of Materials Research</i> ,	7.5	5
38	Boron carbonitride photocatalysts for direct decarboxylation: the construction of C(sp3)N or C(sp3)N(sp2) bonds with visible light. <i>Green Chemistry</i> , 2021 , 23, 3945-3949	10	5
37	Interfacial restructuration of carbon nitride polymers for visible-light photocatalysis. <i>Chemical Communications</i> , 2019 , 55, 8235-8237	5.8	4
36	Across the Board: Xinchen Wang. ChemSusChem, 2018, 11, 327-329	8.3	4
35	LaOCl-Coupled Polymeric Carbon Nitride for Overall Water Splitting through a One-Photon Excitation Pathway. <i>Angewandte Chemie</i> , 2020 , 132, 21105-21109	3.6	4
34	Regulating morphological and electronic structures of polymeric carbon nitrides by successive copolymerization and stream reforming for photocatalytic CO2 reduction. <i>Catalysis Science and Technology</i> , 2021 , 11, 2570-2576	5.5	4
33	One-Pot Synthesis of CoS2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting <i>ChemSusChem</i> , 2022 ,	8.3	4
32	A Borocarbonitride Ceramic Aerogel for Photoredox Catalysis. <i>Angewandte Chemie</i> , 2019 , 131, 6094-60	9§ 6	3
31	An Organic Molecular Photocatalyst Releasing Oxygen from Water. <i>ChemSusChem</i> , 2019 , 12, 4854-4858	88.3	3

30	Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. <i>Nature Communications</i> , 2021 , 12, 6542	17.4	3
29	Supramolecular organization of melem for the synthesis of photoactive porous carbon nitride rods. <i>Nanoscale</i> , 2021 , 13, 19511-19517	7.7	3
28	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. <i>Advanced Science</i> , 2021 , 8, e2102376	13.6	3
27	Atomistic Observation of Temperature-Dependent Defect Evolution within Sub-stoichiometric WO Catalysts ACS Applied Materials & Interfaces, 2021,	9.5	3
26	A novel intermediate-sacrificed route to polycrystalline nanorods consisting of highly oriented quantum dots of cubic CdS. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 3112-6	1.3	2
25	Hydrothermal Synthesis of a Novel Sodium Vanadium Bronze with Single-crystalline Nanobelt-like Morphology. <i>Chemistry Letters</i> , 2004 , 33, 1612-1613	1.7	2
24	Incorporation of metal active sites on porous polycarbazoles for photocatalytic CO2 reduction. <i>ChemCatChem</i> ,	5.2	2
23	Fully Condensed Poly (Triazine Imide) Crystals: Extended Econjugation and Structural Defects for Overall Water Splitting. <i>Angewandte Chemie</i> ,	3.6	2
22	Influence of Pt Promoter on the Visible Light Photocatalytic Properties of N-Doped TiO2. <i>Chinese Journal of Catalysis</i> , 2011 , 32, 100-105	11.3	2
21	A Dinuclear Cobalt Cryptate as a Photocatalyst for Highly Efficient Visible-Light Driven CO2 Reduction. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2017 , 33, 457-457	3.8	2
20	H2 and CH4 production from bio-alcohols using condensed poly(heptazine imide) with visible light. <i>Journal of Materials Chemistry A</i> ,	13	2
19	The role of carbon dots - derived underlayer in hematite photoanodes. <i>Nanoscale</i> , 2020 , 12, 20220-2022	. 9.7	2
18	Oxysulfid-Halbleiter fildie photokatalytische Wasserspaltung mit sichtbarem Licht. <i>Angewandte Chemie</i> , 2019 , 131, 15726-15728	3.6	2
17	Current development of graphitic carbon nitride photocatalysts as one of the organic semiconducting photocatalytic materials 2020 , 417-435		1
16	Nanostructured Carbon Nitrides for Photocatalytic Water Splitting 2015 , 281-300		1
15	A Fully Coplanar DonorAcceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. <i>Angewandte Chemie</i> , 2021 , 133, 16491-16495	3.6	1
14	Photocatalytic purification of contaminated air in intensive care units by ZnSn(OH) nanoparticles. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 31770-31777	5.1	1
13	Bioinspired cobalt cubanes with tunable redox potentials for photocatalytic water oxidation and CO reduction. <i>Beilstein Journal of Organic Chemistry</i> , 2018 , 14, 2331-2339	2.5	1

LIST OF PUBLICATIONS

12	Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production <i>Small</i> , 2022 , e2200129	11	1
11	Organic dyes with multi-branched structures for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121257	21.8	1
10	Innenr©ktitelbild: Cobalt Imidazolate Metal©rganic Frameworks Photosplit CO2 under Mild Reaction Conditions (Angew. Chem. 4/2014). <i>Angewandte Chemie</i> , 2014 , 126, 1189-1189	3.6	0
9	Surface-amino-induced boosting solar conversion of CO2 to CO over natural metal-free catalyst. Journal of CO2 Utilization, 2021, 54, 101773	7.6	O
8	Semi-Hydrogenation of Alkynes by a Tandem Photoredox System Free of Noble Metal. <i>CCS Chemistry</i> ,3185-3191	7.2	0
7	Versatile Synthesis of Hollow Metal Sulfides via Reverse Cation Exchange Reactions for Photocatalytic CO2 Reduction. <i>Angewandte Chemie</i> , 2021 , 133, 25259	3.6	O
6	Photocatalytic performance of hexagonal boron carbon nitride nanomaterials 2020, 475-490		
5	Photocatalytic Purification of Benzene in Air. Nanostructure Science and Technology, 2010, 451-478	0.9	
4	Artificial Photosynthesis by MOFs: Water Splitting and CO2 Conversion. <i>Series on Chemistry, Energy and the Environment</i> , 2020 , 427-452	0.2	
3	Photocatalytic CO2 Reduction to CO by ZIF-9/TiO2. <i>Nanostructure Science and Technology</i> , 2016 , 491-50	06 0.9	
2	A Highly Crystallized Hexagonal BCN Photocatalyst with Superior Anticorrosion Properties. <i>Advanced Optical Materials</i> ,2200282	8.1	
1	Facile fabrication of oxygen-doped carbon nitride with enhanced visible-light photocatalytic degradation of methyl mercaptan. <i>Research on Chemical Intermediates</i> ,1	2.8	