Riki Kawaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3587612/publications.pdf

Version: 2024-02-01

42 papers

4,537 citations

279487 23 h-index 288905 40 g-index

45 all docs

45 docs citations

45 times ranked

6102 citing authors

#	Article	IF	CITATIONS
1	Use Of Weighted Gene Coexpression Network Analysis To Identify Connectivity Between Gut And Brain Gene Expression. FASEB Journal, 2022, 36, .	0.2	O
2	Singleâ€nucleus transcriptome analysis reveals disease―and regenerationâ€associated endothelial cells in white matter vascular dementia. Journal of Cellular and Molecular Medicine, 2022, 26, 3183-3195.	1.6	11
3	Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature, 2022, 606, 557-564.	13.7	69
4	Selective axonal translation of the mRNA isoform encoding prenylated Cdc42 supports axon growth. Journal of Cell Science, 2021, 134, .	1.2	16
5	GADD45A is a protective modifier of neurogenic skeletal muscle atrophy. JCI Insight, 2021, 6, .	2.3	14
6	The glycine arginineâ€rich domain of the RNAâ€binding protein nucleolin regulates its subcellular localization. EMBO Journal, 2021, 40, e107158.	3.5	23
7	Topoisomerase I inhibition and peripheral nerve injury induce DNA breaks and ATF3-associated axon regeneration in sensory neurons. Cell Reports, 2021, 36, 109666.	2.9	16
8	Heart and Brain Pericytes Exhibit a Pro-Fibrotic Response After Vascular Injury. Circulation Research, 2021, 129, e141-e143.	2.0	15
9	A Ca2+-Dependent Switch Activates Axonal Casein Kinase 2α Translation and Drives G3BP1 Granule Disassembly for Axon Regeneration. Current Biology, 2020, 30, 4882-4895.e6.	1.8	22
10	Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. Neuron, 2020, 108, 128-144.e9.	3.8	254
11	Microglia-organized scar-free spinal cord repair in neonatal mice. Nature, 2020, 587, 613-618.	13.7	197
12	The effect of Rbfox2 modulation on retinal transcriptome and visual function. Scientific Reports, 2020, 10, 19683.	1.6	7
13	Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nature Neuroscience, 2020, 23, 500-509.	7.1	290
14	Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in Neural Development and Diseases. Molecular Cell, 2020, 79, 521-534.e15.	4.5	110
15	DYNLRB1 is essential for dynein mediated transport and neuronal survival. Neurobiology of Disease, 2020, 140, 104816.	2.1	15
16	Injured adult neurons regress to an embryonic transcriptional growth state. Nature, 2020, 581, 77-82.	13.7	154
17	Regulatory mechanism for the transmembrane receptor that mediates bidirectional vitamin A transport. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9857-9864.	3.3	20
18	Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. ELife, 2020, 9, .	2.8	85

#	Article	IF	Citations
19	Longitudinal RNA-Seq analysis of acute and chronic neurogenic skeletal muscle atrophy. Scientific Data, 2019, 6, 179.	2.4	15
20	Regeneration Enhances Metastasis: A Novel Role for Neurovascular Signaling in Promoting Melanoma Brain Metastasis. Frontiers in Neuroscience, 2019, 13, 297.	1.4	14
21	White Matter Stroke Induces a Unique Oligo-Astrocyte Niche That Inhibits Recovery. Journal of Neuroscience, 2019, 39, 9343-9359.	1.7	29
22	CSIG-22. RECONCILING TUMOR HETEROGENEITY IN GLIOBLASTOMA USING A PATHWAY-BASED APPROACH. Neuro-Oncology, 2018, 20, vi47-vi47.	0.6	0
23	Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature, 2018, 561, 396-400.	13.7	341
24	Adult rat myelin enhances axonal outgrowth from neural stem cells. Science Translational Medicine, 2018, 10, .	5.8	28
25	hnRNPs Interacting with mRNA Localization Motifs Define AxoNAl RNA Regulons. Molecular and Cellular Proteomics, 2018, 17, 2091-2106.	2.5	32
26	Translatome Regulation in Neuronal Injury and Axon Regrowth. ENeuro, 2018, 5, ENEURO.0276-17.2018.	0.9	26
27	Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner. Molecular Neurobiology, 2017, 54, 4584-4596.	1.9	14
28	Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others. Neuron, 2017, 94, 1112-1120.e4.	3.8	151
29	Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation. Scientific Reports, 2017, 7, 17377.	1.6	38
30	Mapping Gene Expression in Excitatory Neurons during Hippocampal Late-Phase Long-Term Potentiation. Frontiers in Molecular Neuroscience, 2017, 10, 39.	1.4	49
31	Identification of an Efficient Gene Expression Panel for Glioblastoma Classification. PLoS ONE, 2016, 11, e0164649.	1.1	12
32	Astrocyte scar formation aids central nervous system axon regeneration. Nature, 2016, 532, 195-200.	13.7	1,390
33	Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6. Membranes, 2015, 5, 425-453.	1.4	55
34	Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF. ELife, 2014, 3, e05401.	2.8	67
35	Differential and Isomer-Specific Modulation of Vitamin A Transport and the Catalytic Activities of the RBP Receptor by Retinoids. Journal of Membrane Biology, 2013, 246, 647-660.	1.0	9
36	Real-time Analyses of Retinol Transport by the Membrane Receptor of Plasma Retinol Binding Protein. Journal of Visualized Experiments, 2013, , e50169.	0.2	10

#	Article	IF	CITATIONS
37	STRA6-Catalyzed Vitamin A Influx, Efflux, and Exchange. Journal of Membrane Biology, 2012, 245, 731-745.	1.0	67
38	Receptor-Mediated Cellular Uptake Mechanism That Couples to Intracellular Storage. ACS Chemical Biology, 2011, 6, 1041-1051.	1.6	67
39	Techniques to Study Specific Cell-Surface Receptor-Mediated Cellular Vitamin A Uptake. Methods in Molecular Biology, 2010, 652, 341-361.	0.4	9
40	Mapping the Membrane Topology and Extracellular Ligand Binding Domains of the Retinol Binding Protein Receptor. Biochemistry, 2008, 47, 5387-5395.	1.2	49
41	An Essential Ligand-binding Domain in the Membrane Receptor for Retinol-binding Protein Revealed by Large-scale Mutagenesis and a Human Polymorphism. Journal of Biological Chemistry, 2008, 283, 15160-15168.	1.6	58
42	A Membrane Receptor for Retinol Binding Protein Mediates Cellular Uptake of Vitamin A. Science, 2007, 315, 820-825.	6.0	687