Adam SÄdžiwy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3587573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of reactive power compensation algorithm for large-scale street lighting. Journal of Computational Science, 2021, 51, 101338.	1.5	12
2	Optimizing Lighting of Rural Roads and Protected Areas with White Light: A Compromise among Light Pollution, Energy Savings, and Visibility. LEUKOS - Journal of Illuminating Engineering Society of North America, 2020, 16, 147-156.	1.5	30
3	Graph-Based Optimization of Public Lighting Retrofit. Lecture Notes in Computer Science, 2020, , 239-248.	1.0	0
4	Multi-agent Support for Street Lighting Modernization Planning. Lecture Notes in Computer Science, 2019, , 442-452.	1.0	4
5	Energy Reduction in Roadway Lighting Achieved with Novel Design Approach and LEDs. LEUKOS - Journal of Illuminating Engineering Society of North America, 2018, 14, 45-51.	1.5	21
6	Roadway Lighting Retrofit: Environmental and Economic Impact of Greenhouse Gases Footprint Reduction. Sustainability, 2018, 10, 3925.	1.6	8
7	Using a Multi-agent System for Overcoming Flickering Effect in Distributed Large-Scale Customized Lighting Design. Lecture Notes in Computer Science, 2018, , 372-381.	1.0	1
8	Control Driven Lighting Design for Large-Scale Installations. Lecture Notes in Computer Science, 2018, , 691-700.	1.0	0
9	Application of distributed graph transformations to automated generation of control patterns for intelligent lighting systems. Journal of Computational Science, 2017, 23, 20-30.	1.5	20
10	Towards Highly Energy-Efficient Roadway Lighting. Energies, 2016, 9, 263.	1.6	24
11	Multi-Agent System Supporting Automated Large-Scale Photometric Computations. Entropy, 2016, 18, 76.	1.1	8
12	Sustainable Street Lighting Design Supported by Hypergraph-Based Computational Model. Sustainability, 2016, 8, 13.	1.6	16
13	Multi-agent System Supporting Automated GIS-based Photometric Computations. Procedia Computer Science, 2016, 80, 824-833.	1.2	5
14	On Cooperation in Multi-agent System, Based on Heterogeneous Knowledge Representation. Lecture Notes in Computer Science, 2016, , 463-473.	1.0	0
15	A New Approach to Street Lighting Design. LEUKOS - Journal of Illuminating Engineering Society of North America, 2016, 12, 151-162.	1.5	41
16	Conditional Synchronization in Multi-agent Graph-based Knowledge System. Procedia Computer Science, 2015, 51, 1043-1051.	1.2	2
17	Graph-Based Optimization of Energy Efficiency ofÂStreet Lighting. Lecture Notes in Computer Science, 2015, , 515-526.	1.0	5
18	Advanced street lighting control. Expert Systems With Applications, 2014, 41, 999-1005.	4.4	42

Adam Sędziwy

#	Article	IF	CITATIONS
19	Heterogeneous graph grammars synchronization in CAD systems supported by hypergraph representations of buildings. Expert Systems With Applications, 2014, 41, 990-998.	4.4	10
20	Translation of Graph-based Knowledge Representation in Multi-agent System. Procedia Computer Science, 2014, 29, 1048-1056.	1.2	4
21	Problem of Agents Cooperation in Heterogeneous Graph-Based Knowledge Environment. Lecture Notes in Computer Science, 2014, , 269-277.	1.0	0
22	Coordination of Design Processes in Two Perspectives of Computer Aided Design. Key Engineering Materials, 2013, 572, 119-122.	0.4	0
23	Computational Support for Optimizing Street Lighting Design. Advances in Intelligent and Soft Computing, 2013, , 241-255.	0.2	4
24	Supporting Fault Tolerance in Graph-Based Multi-agent Computations. Lecture Notes in Computer Science, 2013, , 397-406.	1.0	0
25	Formal Methods Supporting Agent Aided Smart Lighting Design. Advances in Intelligent and Soft Computing, 2013, , 225-239.	0.2	0
26	Effective Graph Representation for Agent-Based Distributed Computing. Lecture Notes in Computer Science, 2012, , 638-647.	1.0	4
27	Hypergraph Distributed Adaptive Design Supported by Hypergraph Replication. Lecture Notes in Computer Science, 2012, , 671-678.	1.0	0
28	On the Effective Distribution and Maintenance of Knowledge Represented by Complementary Graphs. Lecture Notes in Computer Science, 2012, , 105-120.	1.0	1
29	Solving Large-Scale Multipoint Lighting Design Problem Using Multi-Agent Environment. Key Engineering Materials, 2011, 486, 179-182.	0.4	8
30	Parallel Graph Transformations Supported by Replicated Complementary Graphs. Lecture Notes in Computer Science, 2011, , 254-264.	1.0	8
31	Labelled Transition System Generation from Alvis Language. Lecture Notes in Computer Science, 2011, , 180-189.	1.0	3
32	GRADIS – The multiagent environment supported by graph transformations. Simulation Modelling Practice and Theory, 2010, 18, 1515-1525.	2.2	17
33	Parallel Graph Transformations with Double Pushout Grammars. Lecture Notes in Computer Science, 2010, , 280-288.	1.0	6
34	On the Effective Distribution of Knowledge Represented by Complementary Graphs. Lecture Notes in Computer Science, 2010, , 381-390.	1.0	3
35	On Complexity of Coordination of Parallel Graph Transformations in GRADIS Framework. , 2009, , .		5
36	Using Graph Transformations in Distributed Adaptive Design System. Lecture Notes in Computer Science, 2009, , 477-486.	1.0	3

#	Article	IF	CITATIONS
37	Derivation Control Environment as a Tool for an Efficient Distributed Graph Transformations Coordination. , 2008, , .		0