Karine Clement

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3587557/publications.pdf

Version: 2024-02-01

264 papers 36,025 citations

84 h-index 3563 181 g-index

288 all docs

288 docs citations

times ranked

288

38056 citing authors

#	Article	IF	CITATIONS
1	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	13.7	3,641
2	A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 1998, 392, 398-401.	13.7	2,112
3	Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500, 585-588.	13.7	1,485
4	<i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	6.1	1,379
5	Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes, 2010, 59, 3049-3057.	0.3	1,065
6	Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White Adipose Tissue of Morbidly Obese Subjects After Surgery-Induced Weight Loss. Diabetes, 2005, 54, 2277-2286.	0.3	992
7	A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nature Genetics, 1998, 20, 113-114.	9.4	975
8	Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. Journal of Clinical Investigation, 2000, 106, 253-262.	3.9	760
9	Fibrosis and Adipose Tissue Dysfunction. Cell Metabolism, 2013, 18, 470-477.	7.2	717
10	Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine, 2009, 15, 940-945.	15.2	663
11	Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology, 2012, 56, 1751-1759.	3.6	657
12	Weight loss regulates inflammationâ€related genes in white adipose tissue of obese subjects. FASEB Journal, 2004, 18, 1657-1669.	0.2	569
13	Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 279-297.	8.2	539
14	Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70, 1174-1182.	6.1	519
15	Increased Infiltration of Macrophages in Omental Adipose Tissue Is Associated With Marked Hepatic Lesions in Morbid Human Obesity. Diabetes, 2006, 55, 1554-1561.	0.3	513
16	Fibrosis in Human Adipose Tissue: Composition, Distribution, and Link With Lipid Metabolism and Fat Mass Loss. Diabetes, 2010, 59, 2817-2825.	0.3	511
17	TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nature Communications, 2014, 5, 4309.	5.8	478
18	Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal, 2015, 36, 795-805.	1.0	423

#	Article	IF	CITATIONS
19	Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biology, 2008, 9, R14.	13.9	372
20	Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. New England Journal of Medicine, 2016, 375, 240-246.	13.9	358
21	Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. American Journal of Clinical Nutrition, 2013, 98, 16-24.	2.2	351
22	Review article: Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG: an International Journal of Obstetrics and Gynaecology, 2006, 113, 1141-1147.	1.1	350
23	Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 2015, 22, 320-331.	7.2	345
24	Human Adipose Tissue Macrophages: M1 and M2 Cell Surface Markers in Subcutaneous and Omental Depots and after Weight Loss. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4619-4623.	1.8	318
25	Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68, 70-82.	6.1	297
26	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
27	Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohortâ~†. Journal of Hepatology, 2020, 73, 505-515.	1.8	279
28	Macrophage-Secreted Factors Impair Human Adipogenesis: Involvement of Proinflammatory State in Preadipocytes. Endocrinology, 2007, 148, 868-877.	1.4	278
29	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.	3.9	272
30	Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care, 2018, 41, 1732-1739.	4.3	266
31	The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology, 2016, 12, 169-181.	4.1	258
32	Macrophage-Secreted Factors Promote a Profibrotic Phenotype in Human Preadipocytes. Molecular Endocrinology, 2009, 23, 11-24.	3.7	236
33	Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes and Endocrinology,the, 2020, 8, 960-970.	5.5	235
34	MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nature Medicine, 2018, 24, 551-555.	15.2	219
35	Melanocortin 4 Receptor Mutations in a Large Cohort of Severely Obese Adults: Prevalence, Functional Classification, Genotype-Phenotype Relationship, and Lack of Association with Binge Eating. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1811-1818.	1.8	217
36	The importance of the gut microbiota after bariatric surgery. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 590-598.	8.2	216

3

#	Article	IF	Citations
37	Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese. Journal of Hepatology, 2012, 56, 225-233.	1.8	214
38	Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Science Translational Medicine, 2020, 12, .	5.8	205
39	Defining macrophage phenotype and function in adipose tissue. Trends in Immunology, 2011, 32, 307-314.	2.9	200
40	Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Molecular Metabolism, 2017, 6, 1321-1329.	3.0	200
41	T Cell–Derived IL-22 Amplifies IL-1β–Driven Inflammation in Human Adipose Tissue: Relevance to Obesity and Type 2 Diabetes. Diabetes, 2014, 63, 1966-1977.	0.3	197
42	Gut microbiota and non-alcoholic fatty liver disease: new insights. Clinical Microbiology and Infection, 2013, 19, 338-348.	2.8	196
43	A PDGFRα-Mediated Switch toward CD9high Adipocyte Progenitors Controls Obesity-Induced Adipose Tissue Fibrosis. Cell Metabolism, 2017, 25, 673-685.	7.2	195
44	From correlation to causality: the case of <i>Subdoligranulum</i> . Gut Microbes, 2020, 12, 1849998.	4.3	192
45	CCL5 Promotes Macrophage Recruitment and Survival in Human Adipose Tissue. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 39-45.	1.1	190
46	Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open, 2019, 9, e017995.	0.8	183
47	Mutational analysis of melanocortin-4 receptor, agouti-related protein, and α-melanocyte-stimulating hormone genes in severely obese children. Journal of Pediatrics, 2001, 139, 204-209.	0.9	182
48	Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obesity Facts, 2016, 9, 158-173.	1.6	173
49	Fate and Complex Pathogenic Effects of Dioxins and Polychlorinated Biphenyls in Obese Subjects before and after Drastic Weight Loss. Environmental Health Perspectives, 2011, 119, 377-383.	2.8	170
50	Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Healthâ€"Pathophysiology and Therapeutic Strategies. Gastroenterology, 2021, 160, 573-599.	0.6	169
51	Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition. Diabetologia, 2005, 48, 519-528.	2.9	157
52	Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. Journal of Clinical Investigation, 2019, 129, 4032-4040.	3.9	157
53	Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovascular Research, 2015, 108, 62-73.	1.8	155
54	Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nature Medicine, 2015, 21, 610-618.	15.2	149

#	Article	IF	Citations
55	Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes, 2015, 64, 3121-3134.	0.3	146
56	Treatment for 2 mo with nâ^'3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. American Journal of Clinical Nutrition, 2007, 86, 1670-1679.	2.2	146
57	Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors. Diabetes, 2010, 59, 2513-2521.	0.3	140
58	Mast Cells in Human Adipose Tissue: Link with Morbid Obesity, Inflammatory Status, and Diabetes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1677-E1685.	1.8	139
59	Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB Journal, 2005, 19, 1540-1542.	0.2	138
60	Cathepsin S Promotes Human Preadipocyte Differentiation: Possible Involvement of Fibronectin Degradation. Endocrinology, 2006, 147, 4950-4959.	1.4	132
61	Unraveling the Genetics of Human Obesity. PLoS Genetics, 2006, 2, e188.	1.5	130
62	Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling. Cell Metabolism, 2015, 22, 113-124.	7.2	130
63	Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. Journal of Pathology, 2018, 246, 217-230.	2.1	125
64	The intestinal microbiota regulates host cholesterol homeostasis. BMC Biology, 2019, 17, 94.	1.7	125
65	Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?. Gastroenterology, 2020, 158, 1881-1898.	0.6	123
66	GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes. Diabetes, 2011, 60, 2598-2607.	0.3	122
67	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	5.8	122
68	Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production. Circulation, 2018, 138, 809-822.	1.6	120
69	The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Molecular Metabolism, 2021, 48, 101206.	3.0	114
70	Human adipocyte function is impacted by mechanical cues. Journal of Pathology, 2014, 233, 183-195.	2.1	112
71	Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects. PLoS ONE, 2014, 9, e109434.	1.1	111
72	The Eating Inventory and Body Adiposity from Leanness to Massive Obesity: a Study of 2509 Adults. Obesity, 2004, 12, 2023-2030.	4.0	108

#	Article	IF	Citations
73	Association of Adipose Tissue and Liver Fibrosis With Tissue Stiffness in Morbid Obesity: Links With Diabetes and BMI Loss After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 898-907.	1.8	107
74	Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Scientific Reports, 2017, 7, 3000.	1.6	106
75	Adipocyte Size Threshold Matters: Link with Risk of Type 2 Diabetes and Improved Insulin Resistance After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1466-E1470.	1.8	105
76	Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up. Obesity Surgery, 2016, 26, 785-796.	1.1	104
77	Molecular Genetics of Human Obesityâ€Associated MC4R Mutations. Annals of the New York Academy of Sciences, 2003, 994, 49-57.	1.8	102
78	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	13.7	102
79	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	15.2	102
80	The advanced-DiaRem score improves prediction of diabetes remission 1Âyear post-Roux-en-Y gastric bypass. Diabetologia, 2017, 60, 1892-1902.	2.9	100
81	C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients. Journal of Hepatology, 2011, 55, 660-665.	1.8	98
82	Serum Amyloid A: A Marker of Adiposityâ€induced Lowâ€grade Inflammation but Not of Metabolic Status. Obesity, 2006, 14, 309-318.	1.5	95
83	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	1.0	95
84	Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics, 2020, 16, e1008718.	1.5	95
85	Effects of Diet-Modulated Autologous Fecal Microbiota Transplantation on Weight Regain. Gastroenterology, 2021, 160, 158-173.e10.	0.6	95
86	Association between omental adipose tissue macrophages and liver histopathology in morbid obesity: Influence of glycemic status. Journal of Hepatology, 2009, 51, 354-362.	1.8	92
87	Profiling of the Three Circulating Monocyte Subpopulations in Human Obesity. Journal of Immunology, 2015, 194, 3917-3923.	0.4	92
88	Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes Reports, 2019, 19, 51.	1.7	91
89	Long-term Relapse of Type 2 Diabetes After Roux-en-Y Gastric Bypass: Prediction and Clinical Relevance. Diabetes Care, 2018, 41, 2086-2095.	4.3	90
90	Assessment of epicardial fat volume and myocardial triglyceride content in severely obese subjects: relationship to metabolic profile, cardiac function and visceral fat. International Journal of Obesity, 2012, 36, 422-430.	1.6	89

#	Article	lF	Citations
91	Circulating phospholipid profiling identifies portal contribution to NASH signature in obesity. Journal of Hepatology, 2015, 62, 905-912.	1.8	89
92	Accumulation and Changes in Composition of Collagens in Subcutaneous Adipose Tissue After Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 293-304.	1.8	87
93	Nonalcoholic fatty liver disease and obstructive sleep apnea. Metabolism: Clinical and Experimental, 2016, 65, 1124-1135.	1.5	87
94	Unexpected Endocrine Features and Normal Pigmentation in a Young Adult Patient Carrying a Novel Homozygous Mutation in the POMC Gene. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4955-4962.	1.8	86
95	Synergistic convergence of microbiota-specific systemic IgG and secretory IgA. Journal of Allergy and Clinical Immunology, 2019, 143, 1575-1585.e4.	1.5	86
96	Genetics and the Pathophysiology of Obesity. Pediatric Research, 2003, 53, 721-725.	1.1	85
97	Secretory Type II Phospholipase A2 Is Produced and Secreted by Epicardial Adipose Tissue and Overexpressed in Patients with Coronary Artery Disease. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 963-967.	1.8	85
98	Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: a population-based and inter-laboratory study. Diabetologia, 2017, 60, 1873-1882.	2.9	85
99	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019, 8, 229-242.	3.5	85
100	SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. Journal of Clinical Investigation, 2013, 123, 362-379.	3.9	83
101	Regulation of inflammation-related genes in human adipose tissue. Journal of Internal Medicine, 2007, 262, 422-430.	2.7	80
102	FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics, 2008, 24, 2636-2638.	1.8	78
103	Knee and hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: a specific phenotype for a central player in osteoarthritis. Annals of the Rheumatic Diseases, 2017, 76, 1142-1148.	0.5	78
104	Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice Models: Age, Kinetic and Microbial Status Matter. Frontiers in Microbiology, 2018, 9, 3289.	1.5	77
105	Melanocortin-4 Receptor Mutations and Polymorphisms Do Not Affect Weight Loss after Bariatric Surgery. PLoS ONE, 2012, 7, e48221.	1.1	76
106	Structural and inflammatory heterogeneity in subcutaneous adipose tissue: Relation with liver histopathology in morbid obesity. Journal of Hepatology, 2012, 56, 1152-1158.	1.8	75
107	Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E771-E780.	3.3	74
108	T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes. Current Diabetes Reports, 2017, 17, 81.	1.7	71

#	Article	IF	CITATIONS
109	Nonalcoholic Fatty Liver Disease, Nocturnal Hypoxia, and Endothelial Function in Patients With Sleep Apnea. Chest, 2014, 145, 525-533.	0.4	70
110	Nutritional and Protein Deficiencies in the Short Term following Both Gastric Bypass and Gastric Banding. PLoS ONE, 2016, 11, e0149588.	1.1	70
111	The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454.	2.0	68
112	Effect of Bariatric Surgery-Induced Weight Loss on SR-BI-, ABCG1-, and ABCA1-Mediated Cellular Cholesterol Efflux in Obese Women. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1151-1159.	1.8	67
113	Increased Basement Membrane Components in Adipose Tissue During Obesity: Links With TGFβ and Metabolic Phenotypes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2578-2587.	1.8	67
114	Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. Cell Metabolism, 2019, 30, 754-767.e9.	7.2	67
115	Improvement of nonâ€invasive markers of NAFLD from an individualised, webâ€based exercise program. Alimentary Pharmacology and Therapeutics, 2019, 50, 930-939.	1.9	67
116	<i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	1.8	67
117	Needle and surgical biopsy techniques differentially affect adipose tissue gene expression profiles. American Journal of Clinical Nutrition, 2009, 89, 51-57.	2.2	66
118	Weight Loss Reduces Adipose Tissue Cathepsin S and Its Circulating Levels in Morbidly Obese Women. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1042-1047.	1.8	64
119	Seven Novel Deleterious LEPR Mutations Found in Early-Onset Obesity: a ΔExon6–8 Shared by Subjects From Reunion Island, France, Suggests a Founder Effect. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E757-E766.	1.8	63
120	Resistance Training and Protein Supplementation Increase Strength After Bariatric Surgery: A Randomized Controlled Trial. Obesity, 2018, 26, 1709-1720.	1.5	63
121	Mutational Analysis of the Pro-opiomelanocortin Gene in French Obese Children Led to the Identification of a Novel Deleterious Heterozygous Mutation Located in the α-Melanocyte Stimulating Hormone Domain. Pediatric Research, 2008, 63, 211-216.	1.1	62
122	The FAT Score, a Fibrosis Score of Adipose Tissue: Predicting Weight-Loss Outcome After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2443-2453.	1.8	62
123	DAPK2 Downregulation Associates With Attenuated Adipocyte Autophagic Clearance in Human Obesity. Diabetes, 2015, 64, 3452-3463.	0.3	61
124	Rare melanocortin-3 receptor mutations with in vitro functional consequences are associated with human obesity. Human Molecular Genetics, 2011, 20, 392-399.	1.4	60
125	Bariatric Surgery Induces Disruption in Inflammatory Signaling Pathways Mediated by Immune Cells in Adipose Tissue: A RNA-Seq Study. PLoS ONE, 2015, 10, e0125718.	1.1	60
126	Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut, 2017, 66, 1688-1696.	6.1	59

#	Article	IF	Citations
127	Homozygous Null Mutation of the Melanocortin-4 Receptor and Severe Early-Onset Obesity. Journal of Pediatrics, 2007, 150, 613-617.e1.	0.9	58
128	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	6.1	58
129	Adipocyte ATP-Binding Cassette G1 Promotes Triglyceride Storage, Fat Mass Growth, and Human Obesity. Diabetes, 2015, 64, 840-855.	0.3	56
130	Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. Journal of Hepatology, 2022, 76, 1001-1012.	1.8	54
131	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	6.1	53
132	Adipose tissue inflammation and liver pathology in human obesity. Diabetes and Metabolism, 2008, 34, 658-663.	1.4	52
133	A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial. PLoS ONE, 2015, 10, e0138646.	1.1	52
134	Risk assessment with gut microbiome and metabolite markers in NAFLD development. Science Translational Medicine, 2022, 14, .	5.8	50
135	Association of poorly controlled diabetes with low serum leptin in morbid obesity. International Journal of Obesity, 1997, 21, 556-561.	1.6	49
136	Endothelial Cells From Visceral Adipose Tissue Disrupt Adipocyte Functions in a Three-Dimensional Setting: Partial Rescue by Angiopoietin-1. Diabetes, 2014, 63, 535-549.	0.3	49
137	High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. Surgery for Obesity and Related Diseases, 2015, 11, 148-154.	1.0	49
138	Adipose Tissue Fibrosis in Obesity: Etiology and Challenges. Annual Review of Physiology, 2022, 84, 135-155.	5.6	49
139	Homozygous Leptin Receptor Mutation Due to Uniparental Disomy of Chromosome 1: Response to Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E397-E402.	1.8	47
140	Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients, 2020, 12, 278.	1.7	47
141	Adipose Gene Expression Prior to Weight Loss Can Differentiate and Weakly Predict Dietary Responders. PLoS ONE, 2007, 2, e1344.	1.1	45
142	Eating behaviour in obese patients with melanocortin-4 receptor mutations: a literature review. International Journal of Obesity, 2013, 37, 1027-1035.	1.6	45
143	Senescence-associated \hat{l}^2 -galactosidase in subcutaneous adipose tissue associates with altered glycaemic status and truncal fat in severe obesity. Diabetologia, 2021, 64, 240-254.	2.9	45
144	Adipose Tissue Remodeling in Children: The Link between Collagen Deposition and Age-Related Adipocyte Growth. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1320-1327.	1.8	44

#	Article	IF	Citations
145	Pregnancy in a Woman with a Leptin-Receptor Mutation. New England Journal of Medicine, 2012, 366, 1064-1065.	13.9	43
146	Emerging role of cathepsin S in obesity and its associated diseases. Clinical Chemistry and Laboratory Medicine, 2007, 45, 328-32.	1.4	42
147	AhR activation defends gut barrier integrity against damage occurring in obesity. Molecular Metabolism, 2020, 39, 101007.	3.0	42
148	Associations Between Genetic Obesity Susceptibility and Early Postnatal Fat and Lean Mass. JAMA Pediatrics, 2014, 168, 1122.	3.3	41
149	Weight Loss, Xanthine Oxidase, and Serum Urate Levels: A Prospective Longitudinal Study of Obese Patients. Arthritis Care and Research, 2016, 68, 1036-1042.	1.5	40
150	Single nucleotide polymorphisms of protein tyrosine phosphatase 1B gene are associated with obesity in morbidly obese French subjects. Diabetologia, 2004, 47, 1278-1284.	2.9	39
151	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	1.3	39
152	Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Scientific Reports, 2020, 10, 3850.	1.6	39
153	Cardiac MR Strain: A Noninvasive Biomarker of Fibrofatty Remodeling of the Left Atrial Myocardium. Radiology, 2018, 286, 83-92.	3.6	38
154	Prospective assessment and histological analysis of adherent perinephric fat in partial nephrectomies. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 39.e9-39.e17.	0.8	37
155	Mucosalâ€associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders. FASEB Journal, 2018, 32, 5078-5089.	0.2	37
156	Prediction of Long-Term Diabetes Remission After RYGB, Sleeve Gastrectomy, and Adjustable Gastric Banding Using DiaRem and Advanced-DiaRem Scores. Obesity Surgery, 2019, 29, 796-804.	1.1	37
157	Serum lipidomics reveals early differential effects of gastric bypass compared with banding on phospholipids and sphingolipids independent of differences in weight loss. International Journal of Obesity, 2017, 41, 917-925.	1.6	36
158	Lipid-rich diet enhances L-cell density in obese subjects and in mice through improved L-cell differentiation. Journal of Nutritional Science, 2015, 4, e22.	0.7	34
159	Interpretable and accurate prediction models for metagenomics data. GigaScience, 2020, 9, .	3.3	34
160	Novel pharmacological MC4R agonists can efficiently activate mutated MC4R from obese patient with impaired endogenous agonist response. Journal of Endocrinology, 2010, 207, 177-183.	1.2	33
161	Effect of Genotype and Previous GH Treatment on Adiposity in Adults With Prader-Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4895-4903.	1.8	33
162	Adipose tissue autophagy status in obesity: Expression and fluxâ€"two faces of the picture. Autophagy, 2016, 12, 588-589.	4.3	33

#	Article	IF	Citations
163	Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.	6.1	33
164	Interactional and functional centrality in transcriptional co-expression networks. Bioinformatics, 2010, 26, 3083-3089.	1.8	32
165	Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food Frequency Questionnaire. Journal of the Academy of Nutrition and Dietetics, 2017, 117, 878-888.	0.4	32
166	Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among Emirati subjects: A pilot study. Scientific Reports, 2020, 10, 9624.	1.6	31
167	MECHANISMS IN ENDOCRINOLOGY: Update on treatments for patients with genetic obesity. European Journal of Endocrinology, 2020, 183, R149-R166.	1.9	31
168	Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. International Journal of Obesity, 2016, 40, 1823-1831.	1.6	30
169	Long-term outcomes of bariatric surgery in patients with bi-allelic mutations in the POMC, LEPR, and MC4R genes. Surgery for Obesity and Related Diseases, 2021, 17, 1449-1456.	1.0	29
170	Medication Cost is Significantly Reduced After Roux-en-Y Gastric Bypass in Obese Patients. Obesity Surgery, 2014, 24, 1896-1903.	1.1	28
171	Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Scientific Reports, 2016, 6, 24618.	1.6	28
172	Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.	2.0	28
173	Rare genetic forms of obesity: From gene to therapy. Physiology and Behavior, 2020, 227, 113134.	1.0	28
174	Circulating Blood Monocyte Subclasses and Lipid-Laden Adipose Tissue Macrophages in Human Obesity. PLoS ONE, 2016, 11, e0159350.	1.1	28
175	Promoter adiponectin polymorphisms and waist/hip ratio variation in a prospective French adults study. International Journal of Obesity, 2008, 32, 669-675.	1.6	27
176	Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome?. Seminars in Immunopathology, 2019, 41, 461-475.	2.8	27
177	Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB Journal, 2019, 33, 4741-4754.	0.2	27
178	Bariatric surgery, adipose tissue and gut microbiota. International Journal of Obesity, 2011, 35, S7-S15.	1.6	26
179	Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.	1.4	26
180	Type 2 Diabetes Remission After Gastric Bypass: What Is the Best Prediction Tool for Clinicians?. Obesity Surgery, 2015, 25, 1128-1132.	1.1	25

#	Article	IF	CITATIONS
181	Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity. International Journal of Obesity, 2021, 45, 170-183.	1.6	25
182	Epicardial Fat Volume Is Associated With Coronary Microvascular Response in Healthy Subjects: A Pilot Study. Obesity, 2012, 20, 1200-1205.	1.5	24
183	Relative Adipose Tissue Failure in Alström Syndrome Drives Obesity-Induced Insulin Resistance. Diabetes, 2021, 70, 364-376.	0.3	23
184	Fibrosis as a Cause or a Consequence of White Adipose Tissue Inflammation in Obesity. Current Obesity Reports, 2013, 2, 1-9.	3.5	22
185	Persistence of severe liver fibrosis despite substantial weight loss with bariatric surgery. Hepatology, 2022, 76, 456-468.	3. 6	22
186	Implication of Heterozygous Variants in Genes of the Leptin–Melanocortin Pathway in Severe Obesity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2991-3006.	1.8	21
187	Adaptive Expression of MicroRNA-125a in Adipose Tissue in Response to Obesity in Mice and Men. PLoS ONE, 2014, 9, e91375.	1.1	21
188	Autophagy inhibition blunts PDGFRA adipose progenitors' cell-autonomous fibrogenic response to high-fat diet. Autophagy, 2020, 16, 2156-2166.	4.3	20
189	Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Reports, 2022, 4, 100409.	2.6	20
190	Additive effect of A>G (-3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the beta 3-adrenergic receptor gene on weight gain in morbid obesity., 1996, 20, 1062-6.		20
191	Transcriptomic signatures of villous cytotrophoblast and syncytiotrophoblast in term human placenta. Placenta, 2016, 44, 83-90.	0.7	18
192	COVIDâ€19 and its Severity in Bariatric Surgeryâ€Operated Patients. Obesity, 2021, 29, 24-28.	1.5	18
193	Rare genetic causes of obesity: Diagnosis and management in clinical care. Annales D'Endocrinologie, 2022, 83, 63-72.	0.6	18
194	A Melanocortin-4 Receptor Agonist Induces Skin and Hair Pigmentation in Patients with Monogenic Mutations in the Leptin-Melanocortin Pathway. Skin Pharmacology and Physiology, 2021, 34, 307-316.	1.1	16
195	Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nature Metabolism, 2022, 4, 476-494.	5.1	16
196	OBEDIS Core Variables Project: European Expert Guidelines on a Minimal Core Set of Variables to Include in Randomized, Controlled Clinical Trials of Obesity Interventions. Obesity Facts, 2020, 13, 1-28.	1.6	15
197	Resting-state connectivity within the brain's reward system predicts weight loss and correlates with leptin. Brain Communications, 2021, 3, fcab005.	1.5	15
198	Benefits of Iterative Searches of Large Databases to Interpret Large Human Gut Metaproteomic Data Sets. Journal of Proteome Research, 2021, 20, 1522-1534.	1.8	15

#	Article	IF	CITATIONS
199	Gut microbiota and vitamin status in persons with obesity: A key interplay. Obesity Reviews, 2022, 23, e13377.	3.1	15
200	Long-Term Weight Outcome After Bariatric Surgery in Patients with Melanocortin-4 Receptor Gene Variants: a Case–Control Study of 105 Patients. Obesity Surgery, 2022, 32, 837-844.	1.1	15
201	The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes, 2022, 14, 2050635.	4.3	15
202	Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetology and Metabolic Syndrome, 2021, 13, 56.	1.2	14
203	Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford Nanopore Technologies. MSystems, 2021, 6, e0075021.	1.7	14
204	Quality of life outcomes in two phase 3 trials of setmelanotide in patients with obesity due to LEPR or POMC deficiency. Orphanet Journal of Rare Diseases, 2022, 17, 38.	1.2	14
205	Cathepsin S genotypes are associated with Apoâ€A1 and HDLâ€cholesterol in lean and obese French populations. Clinical Genetics, 2008, 74, 155-163.	1.0	13
206	COVIDâ€19: A Lever for the Recognition of Obesity as a Disease? The French Experience. Obesity, 2020, 28, 1584-1585.	1.5	13
207	Adipose tissue adaptive response to <i>trans</i> â€10, <i>cisâ€</i> 12â€conjugated linoleic acid engages alternatively activated M2 macrophages. FASEB Journal, 2016, 30, 241-251.	0.2	12
208	What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Food Choice: Summary from a Pennington Scientific Symposium. Obesity, 2020, 28, 1386-1396.	1.5	12
209	Weight Loss After Sleeve Gastrectomy: Does Type 2 Diabetes Status Impact Weight and Body Composition Trajectories?. Obesity Surgery, 2021, 31, 1046-1054.	1.1	12
210	In obese and non-obese adults, the cis-regulatory rs361072 promoter variant of PIK3CB is associated with insulin resistance not with type 2 diabetes. Molecular Genetics and Metabolism, 2009, 96, 129-132.	0.5	11
211	Association between melanocortin-4 receptor mutations and eating behaviors in obese patients: a case–control study. International Journal of Obesity, 2014, 38, 883-885.	1.6	11
212	AdipoScan: A Novel Transient Elastography-Based Tool Used to Non-Invasively Assess Subcutaneous Adipose Tissue Shear Wave Speed in Obesity. Ultrasound in Medicine and Biology, 2016, 42, 2401-2413.	0.7	11
213	The Impact of the COVID-19 Lockdown on Weight Loss and Body Composition in Subjects with Overweight and Obesity Participating in a Nationwide Weight-Loss Program: Impact of a Remote Consultation Follow-Up—The CO-RNPC Study. Nutrients, 2021, 13, 2152.	1.7	11
214	Exploring Semi-Quantitative Metagenomic Studies Using Oxford Nanopore Sequencing: A Computational and Experimental Protocol. Genes, 2021, 12, 1496.	1.0	11
215	Adipose tissue gene expression in patients with a loss of function mutation in the leptin receptor. International Journal of Obesity, 2002, 26, 1533-1538.	1.6	10
216	The mid-infrared spectroscopy: A novel non-invasive diagnostic tool for NASH diagnosis in severe obesity. JHEP Reports, 2019, 1, 361-368.	2.6	10

#	Article	IF	CITATIONS
217	Effects of the COVID-19 pandemic and lockdown on the mental and physical health of adults with Prader-Willi syndrome. Orphanet Journal of Rare Diseases, 2021, 16, 202.	1.2	10
218	The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1111-1119.	2.6	10
219	Dietary Factors Impact on the Association between CTSS Variants and Obesity Related Traits. PLoS ONE, 2012, 7, e40394.	1.1	9
220	Lysosomal Acid Lipase Drives Adipocyte Cholesterol Homeostasis and Modulates Lipid Storage in Obesity, Independent of Autophagy. Diabetes, 2021, 70, 76-90.	0.3	9
221	Protein supplementation during an energy-restricted diet induces visceral fat loss and gut microbiota amino acid metabolism activation: a randomized trial. Scientific Reports, 2021, 11, 15620.	1.6	9
222	Cultural Influences on the Regulation of Energy Intake and Obesity: A Qualitative Study Comparing Food Customs and Attitudes to Eating in Adults from France and the United States. Nutrients, 2021, 13, 63.	1.7	9
223	A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice. EBioMedicine, 2020, 58, 102895.	2.7	8
224	Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and Therapeutic Potential of Polyphenols. Biomolecules, 2022, 12, 378.	1.8	8
225	Enteroendocrine System and Gut Barrier in Metabolic Disorders. International Journal of Molecular Sciences, 2022, 23, 3732.	1.8	8
226	Characterization of the Gut Microbiota in Individuals with Overweight or Obesity during a Real-World Weight Loss Dietary Program: A Focus on the Bacteroides 2 Enterotype. Biomedicines, 2022, 10, 16.	1.4	8
227	Effect of COVID-19 Lockdowns on Physical Activity, Eating Behavior, Body Weight and Psychological Outcomes in a Post-Bariatric Cohort. Obesity Surgery, 2022, 32, 1-9.	1.1	8
228	Altered subcutaneous adipose tissue parameters after switching ART-controlled HIV+ patients to raltegravir/maraviroc. Aids, 2021, 35, 1625-1630.	1.0	7
229	Clinical management of patients with genetic obesity during COVID-19 pandemic: position paper of the ESE Growth & Desity COVID-19 Study Group and Rare Endo-ERN main thematic group on Growth and Obesity. Endocrine, 2021, 71, 653-662.	1.1	6
230	Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts. Nutrients, 2021, 13, 3159.	1.7	6
231	C1431T Variant of PPARÎ ³ Is Associated with Preeclampsia in Pregnant Women. Life, 2021, 11, 1052.	1.1	6
232	Fibrogenesis Marker PRO-C3 Is Higher in Advanced Liver Fibrosis and Improves in Patients Undergoing Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1356-e1366.	1.8	6
233	Beta-hydroxybutyrate dampens adipose progenitors' profibrotic activation through canonical Tgfβ signaling and non-canonical ZFP36-dependent mechanisms. Molecular Metabolism, 2022, 61, 101512.	3.0	6
234	Obesity Due to Steroid Receptor Coactivator-1 Deficiency Is Associated With Endocrine and Metabolic Abnormalities. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2532-e2544.	1.8	5

#	Article	IF	Citations
235	Intermittent Hypoxia Rewires the Liver Transcriptome and Fires up Fatty Acids Usage for Mitochondrial Respiration. Frontiers in Medicine, 2022, 9, 829979.	1.2	5
236	The fused lasso penalty for learning interpretable medical scoring systems. , 2017, , .		4
237	Abdominal adipose tissue components quantification in MRI as a relevant biomarker of metabolic profile. Magnetic Resonance Imaging, 2021, 80, 14-20.	1.0	4
238	Intestinal alteration of \hat{l}_{\pm} -gustducin and sweet taste signaling pathway in metabolic diseases is partly rescued after weight loss and diabetes remission. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E417-E432.	1.8	4
239	Hnf4g invalidation prevents diet-induced obesity via intestinal lipid malabsorption. Journal of Endocrinology, 2022, 252, 31-44.	1.2	4
240	Human catalase gene promoter haplotype and cardiometabolic improvement after bariatric surgery. Gene, 2018, 656, 17-21.	1.0	3
241	A place for vitamin supplementation and functional food in bariatric surgery?. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 442-448.	1.3	3
242	PAF signaling plays a role in obesity-induced adipose tissue remodeling. International Journal of Obesity, 2022, 46, 68-76.	1.6	3
243	Obesity-Related Adipose Tissue Remodeling in the Light of Extracellular Mitochondria Transfer. International Journal of Molecular Sciences, 2022, 23, 632.	1.8	3
244	Reply to C Matuchansky. American Journal of Clinical Nutrition, 2014, 99, 650-651.	2.2	2
245	AdipoScan™ - A novel transient elastography based tool to assess subcutaneous adipose tissue shear wave speed in morbidly obese patients. , 2014, , .		2
246	Adipose tissue fibrosis assessed by high resolution ex vivo MRI as a hallmark of tissue alteration in morbid obesity. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2162-2168.	1.1	2
247	Le prélèvement de tissu adipeux: un acte médical pour la recherche clinique. Perspectives pour le soin courant. Obesite, 2013, 8, 222-227.	0.1	1
248	Vers de nouveaux phénotypes et de nouvelles nosographiesÂ: de l'obésité aux maladies du tissu adipeu Cahiers De Nutrition Et De Dietetique, 2014, 49, 104-112.	^{IX} 0.2	1
249	Timing of Onset of Adverse Events With Setmelanotide, an MC4R Agonist, in Patients With Severe Obesity Due to LEPR or POMC Deficiency. Journal of the Endocrine Society, 2021, 5, A30-A31.	0.1	1
250	Fibrose du tissu adipeux chez l'obèse : nouveaux aspects. Bulletin De L'Academie Nationale De Medecine, 2017, 201, 755-763.	0.0	1
251	Quelle implication pour la cathepsine S dans l'obésité ?. Obesite, 2007, 2, 260-264.	0.1	O
252	Response to Comment on Pellegrinelli et al. Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes 2015;64:3121–3134. Diabetes, 2015, 64, e23-e24.	0.3	0

#	Article	IF	CITATIONS
253	Sparse Zero-Sum Games as Stable Functional Feature Selection. PLoS ONE, 2015, 10, e0134683.	1.1	O
254	Le microbiote intestinal : un nouvel acteur de la nutrition ?. Cahiers De Nutrition Et De Dietetique, 2015, 50, 6S22-6S29.	0.2	0
255	L'intelligence artificielle au service des maladies métaboliques. Medecine Des Maladies Metaboliques, 2021, 15, 70-79.	0.1	0
256	ObÃ@sitÃ@s rares. , 2021, , 381-390.		0
257	Histoire naturelle et trajectoires des obésités. , 2021, , 137-146.		O
258	L'intelligence artificielle au service de l'obésité. , 2021, , 645-650.		0
259	Severe Obesity Is Associated with Altered Gut Microbiota Biotin Metabolism and Host Biotin Status. FASEB Journal, 2021, 35, .	0.2	O
260	Obésité et Covid-19. , 2021, , 341-345.		0
261	Into the wild: early time-window for wild microbes to confer resistance to obesity. Nature Reviews Endocrinology, 2021, 17, 711-712.	4.3	0
262	Prospective assessment of the adherent perinephric fat in partial nephrectomies: Predictors and impact on peri-operative outcomes Journal of Clinical Oncology, 2016, 34, 543-543.	0.8	0
263	Ein individualisiertes 8-wöchiges Sportprogramm verbessert bei Patienten mit NAFLD die hepatische Fibrose und Inflammation und steigert die Vielfalt des Mikrobioms. , 2019, 57, .		0
264	Récepteur MC4RÂ: actualités de la recherche dans l'obésité et potentiels développements thérapeutiques. Medecine Des Maladies Metaboliques, 2020, 14, 632-638.	0.1	0