## Yeongjun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3587388/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360, 998-1003.                                                                                                     | 12.6 | 982       |
| 2  | Tough and Waterâ€Insensitive Selfâ€Healing Elastomer for Robust Electronic Skin. Advanced Materials,<br>2018, 30, e1706846.                                                                 | 21.0 | 798       |
| 3  | An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 2018, 13, 1057-1065.                | 31.5 | 736       |
| 4  | Stretchable organic optoelectronic sensorimotor synapse. Science Advances, 2018, 4, eaat7387.                                                                                               | 10.3 | 359       |
| 5  | Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Advanced Materials, 2020, 32, e1903558.                                                               | 21.0 | 289       |
| 6  | Retinaâ€Inspired Carbon Nitrideâ€Based Photonic Synapses for Selective Detection of UV Light. Advanced<br>Materials, 2020, 32, e1906899.                                                    | 21.0 | 222       |
| 7  | Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. Accounts of Chemical Research, 2019, 52, 964-974.                                | 15.6 | 213       |
| 8  | Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science<br>Advances, 2019, 5, eaav3097.                                                       | 10.3 | 179       |
| 9  | Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system.<br>Science Advances, 2021, 7, .                                                          | 10.3 | 144       |
| 10 | Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics. Nano Energy, 2019, 65, 104035. | 16.0 | 115       |
| 11 | Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic<br>Computing. Advanced Electronic Materials, 2019, 5, 1900008.                                | 5.1  | 109       |
| 12 | Organic Nanowire Fabrication and Device Applications. Small, 2015, 11, 45-62.                                                                                                               | 10.0 | 97        |
| 13 | Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401.                                                                                               | 21.0 | 82        |
| 14 | Organic electronic synapses with low energy consumption. Joule, 2021, 5, 794-810.                                                                                                           | 24.0 | 79        |
| 15 | Versatile Metal Nanowiring Platform for Largeâ€Scale Nano―and Optoâ€Electronic Devices. Advanced<br>Materials, 2016, 28, 9109-9116.                                                         | 21.0 | 69        |
| 16 | Rapid Fabrication of Designable Large‣cale Aligned Graphene Nanoribbons by Electroâ€hydrodynamic<br>Nanowire Lithography. Advanced Materials, 2014, 26, 3459-3464.                          | 21.0 | 59        |
| 17 | Individually Positionâ€Addressable Metalâ€Nanofiber Electrodes for Largeâ€Area Electronics. Advanced<br>Materials, 2014, 26, 8010-8016.                                                     | 21.0 | 53        |
| 18 | Room-Temperature-Processable Wire-Templated Nanoelectrodes for Flexible and Transparent All-Wire Electronics. ACS Nano, 2017, 11, 3681-3689.                                                | 14.6 | 52        |

Yeongjun Lee

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Water Passivation of Perovskite Nanocrystals Enables Airâ€&table Intrinsically Stretchable<br>Color onversion Layers for Stretchable Displays. Advanced Materials, 2020, 32, e2001989.                                                                   | 21.0 | 51        |
| 20 | Achieving Microstructureâ€Controlled Synaptic Plasticity and Longâ€Term Retention in Ionâ€Gelâ€Gated<br>Organic Synaptic Transistors. Advanced Intelligent Systems, 2020, 2, 2000012.                                                                    | 6.1  | 51        |
| 21 | Onâ€Fabrication Solidâ€State Nâ€Doping of Graphene by an Electronâ€Transporting Metal Oxide Layer for<br>Efficient Inverted Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600172.                                                            | 19.5 | 46        |
| 22 | Flexible transparent electrodes for organic light-emitting diodes. Journal of Information Display, 2015, 16, 71-84.                                                                                                                                      | 4.0  | 43        |
| 23 | One-dimensional conjugated polymer nanomaterials for flexible and stretchable electronics. Journal of Materials Chemistry C, 2018, 6, 3538-3550.                                                                                                         | 5.5  | 42        |
| 24 | Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy, 2019, 58, 437-446.                                                                                                                                                                   | 16.0 | 36        |
| 25 | Simple, Inexpensive, and Rapid Approach to Fabricate Crossâ€5haped Memristors Using an<br>Inorganicâ€Nanowireâ€Digitalâ€Alignment Technique and a Oneâ€5tep Reduction Process. Advanced Materials,<br>2016, 28, 527-532.                                 | 21.0 | 35        |
| 26 | Transparent Flexible Nanoline Field-Effect Transistor Array with High Integration in a Large Area. ACS<br>Nano, 2020, 14, 907-918.                                                                                                                       | 14.6 | 33        |
| 27 | Stretchable PPG sensor with light polarization for physical activity–permissible monitoring. Science<br>Advances, 2022, 8, eabm3622.                                                                                                                     | 10.3 | 31        |
| 28 | Ideal conducting polymer anode for perovskite light-emitting diodes by molecular interaction decoupling. Nano Energy, 2019, 60, 324-331.                                                                                                                 | 16.0 | 28        |
| 29 | Largeâ€5cale Highly Aligned Nanowire Printing. Macromolecular Materials and Engineering, 2017, 302, 1600507.                                                                                                                                             | 3.6  | 22        |
| 30 | Photonic Synapses: Retinaâ€Inspired Carbon Nitrideâ€Based Photonic Synapses for Selective Detection of<br>UV Light (Adv. Mater. 11/2020). Advanced Materials, 2020, 32, 2070080.                                                                         | 21.0 | 16        |
| 31 | Large-scale metal nanoelectrode arrays based on printed nanowire lithography for nanowire complementary inverters. Nanoscale, 2017, 9, 15766-15772.                                                                                                      | 5.6  | 13        |
| 32 | Neuromorphic Skin Based on Emerging Artificial Synapses. Advanced Materials Technologies, 2022, 7, .                                                                                                                                                     | 5.8  | 11        |
| 33 | Supraâ€Binary Polarization in a Ferroelectric Nanowire. Advanced Materials, 2021, 33, e2101981.                                                                                                                                                          | 21.0 | 4         |
| 34 | Optoâ€Electronic Devices: Versatile Metal Nanowiring Platform for Largeâ€6cale Nano―and<br>Optoâ€Electronic Devices (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9232-9232.                                                                      | 21.0 | 2         |
| 35 | Copper Nanowires: Individually Position-Addressable Metal-Nanofiber Electrodes for Large-Area<br>Electronics (Adv. Mater. 47/2014). Advanced Materials, 2014, 26, 8067-8067.                                                                             | 21.0 | 0         |
| 36 | Nanowires: Simple, Inexpensive, and Rapid Approach to Fabricate Crossâ€Shaped Memristors Using an<br>Inorganicâ€Nanowireâ€Digitalâ€Alignment Technique and a Oneâ€Step Reduction Process (Adv. Mater. 3/2016).<br>Advanced Materials, 2016, 28, 591-591. | 21.0 | 0         |

0

| #  | Article                                                        | IF | CITATIONS |
|----|----------------------------------------------------------------|----|-----------|
| 37 | 3D Printed Ion-Selective Field Effect Transistors. , 2018, , . |    | 0         |
|    |                                                                |    |           |

Organic Artificial Nerve Electronics. , 2022, , 413-452.