
Pablo A Silveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/35872/publications.pdf Version: 2024-02-01

PARIO A SULVEIRA

#	Article	IF	CITATIONS
1	Anti-Mouse CD83 Monoclonal Antibody Targeting Mature Dendritic Cells Provides Protection Against Collagen Induced Arthritis. Frontiers in Immunology, 2022, 13, 784528.	2.2	1
2	Distinguishing human peripheral blood CD16 + myeloid cells based on phenotypic characteristics. Journal of Leukocyte Biology, 2020, 107, 323-339.	1.5	8
3	Targeting CD83 in mantle cell lymphoma with antiâ€human CD83 antibody. Clinical and Translational Immunology, 2020, 9, e1156.	1.7	3
4	Dihydrotestosterone (DHT) Enhances Wound Healing of Major Burn Injury by Accelerating Resolution of Inflammation in Mice. International Journal of Molecular Sciences, 2020, 21, 6231.	1.8	9
5	Is Hematopoietic Stem Cell Transplantation Required to Unleash the Full Potential of Immunotherapy in Acute Myeloid Leukemia?. Journal of Clinical Medicine, 2020, 9, 554.	1.0	10
6	An Anti-CD300f Antibody Drug Conjugate Depletes Hematopoietic Stem Cells and Primary Acute Myeloid Leukemia (AML): Facilitating a Targeted Conditioning Regimen for Allogeneic Stem Cell Transplantation in AML. Biology of Blood and Marrow Transplantation, 2020, 26, S33.	2.0	1
7	Targeting CD300f to enhance hematopoietic stem cell transplantation in acute myeloid leukemia. Blood Advances, 2020, 4, 1206-1216.	2.5	7
8	CD300f epitopes are specific targets for acute myeloid leukemia with monocytic differentiation. Molecular Oncology, 2019, 13, 2107-2120.	2.1	9
9	On the Other Side: Manipulating the Immune Checkpoint Landscape of Dendritic Cells to Enhance Cancer Immunotherapy. Frontiers in Oncology, 2019, 9, 50.	1.3	11
10	CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Frontiers in Immunology, 2019, 10, 1312.	2.2	117
11	Examination of CD302 as a potential therapeutic target for acute myeloid leukemia. PLoS ONE, 2019, 14, e0216368.	1.1	13
12	The cell surface phenotype of human dendritic cells. Seminars in Cell and Developmental Biology, 2019, 86, 3-14.	2.3	45
13	CD83 is a new potential biomarker and therapeutic target for Hodgkin lymphoma. Haematologica, 2018, 103, 655-665.	1.7	24
14	Bone Marrow Graft-Versus-Host Disease in Reduced Intensity Conditioned Major Histocompatibility Complex Matched Murine Allogeneic Hematopoietic Cell Transplantation. Transplantation, 2018, 102, S421.	0.5	0
15	Characterization of the New Immune Suppressive Anti Human CD83 Monoclonal Antibody 3C12C in Non-Human Primates. Transplantation, 2018, 102, S604.	0.5	0
16	Bone Marrow Graft-Versus-Host Disease in Reduced Intensity Conditioned Major Histocompatibility Complex Matched Murine Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, S199.	2.0	0
17	Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Molecular Immunology, 2017, 82, 19-33.	1.0	17
18	Bone Marrow Graft-Versus-Host Disease in Major Histocompatibility Complex-Matched Murine Reduced-Intensity Allogeneic Hemopoietic Cell Transplantation. Transplantation, 2017, 101, 2695-2704.	0.5	0

PABLO A SILVEIRA

#	Article	IF	CITATIONS
19	The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. Journal of Immunology, 2016, 197, 4613-4625.	0.4	34
20	CMRF-56 ⁺ blood dendritic cells loaded with mRNA induce effective antigen-specific cytotoxic T-lymphocyte responses. Oncolmmunology, 2016, 5, e1168555.	2.1	17
21	Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. Journal of Immunology, 2016, 197, 885-898.	0.4	28
22	New insights into the phenotype of human dendritic cell populations. Clinical and Translational Immunology, 2016, 5, e61.	1.7	29
23	A CD2 highâ€expressing stressâ€resistant human plasmacytoid dendriticâ€eell subset. Immunology and Cell Biology, 2016, 94, 447-457.	1.0	34
24	Immunosuppressive human anti-CD83 monoclonal antibody depletion of activated dendritic cells in transplantation. Leukemia, 2016, 30, 692-700.	3.3	24
25	The Human Monoclonal Antibody 3C12C, Targeting Activated Dendritic Cells Is a Potential New Immunosuppressive Agent. Biology of Blood and Marrow Transplantation, 2015, 21, S330-S331.	2.0	0
26	<i>Sleeping Beauty</i> Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes. G3: Genes, Genomes, Genetics, 2015, 5, 2903-2911.	0.8	7
27	TRAF2 regulates peripheral CD8 ⁺ Tâ€cell and NKTâ€cell homeostasis by modulating sensitivity to ILâ€15. European Journal of Immunology, 2015, 45, 1820-1831.	1.6	11
28	Functional Studies on the C-Type Lectin Receptor CD302 Present on Dendritic Cells and Macrophages. Blood, 2015, 126, 2198-2198.	0.6	0
29	Characterisation of Human CD83 Expression on Immune Cells and Their Targeting with CD83 Antibodies to Prevent Graft Versus Host Disease in Allogeneic Haematopoietic Cell Transplantation. Blood, 2015, 126, 3081-3081.	0.6	0
30	The CD19 signalling molecule is elevated in NOD mice and controls type 1 diabetes development. Diabetologia, 2013, 56, 2659-2668.	2.9	7
31	Intrinsic Molecular Factors Cause Aberrant Expansion of the Splenic Marginal Zone B Cell Population in Nonobese Diabetic Mice. Journal of Immunology, 2013, 191, 97-109.	0.4	32
32	Subcongenic Analyses Reveal Complex Interactions between Distal Chromosome 4 Genes Controlling Diabetogenic B Cells and CD4 T Cells in Nonobese Diabetic Mice. Journal of Immunology, 2012, 189, 1406-1417.	0.4	11
33	B cell-directed therapies in type 1 diabetes. Trends in Immunology, 2011, 32, 287-294.	2.9	45
34	A Subset of Interleukin-21+ Chemokine Receptor CCR9+ T Helper Cells Target Accessory Organs of the Digestive System in Autoimmunity. Immunity, 2011, 34, 602-615.	6.6	104
35	Enhanced responsiveness to Tâ€cell help causes loss of Bâ€lymphocyte tolerance to a βâ€cell neoâ€selfâ€antigen in type 1 diabetes prone NOD mice. European Journal of Immunology, 2010, 40, 3413-3425.	1.6	12
36	B-cell tolerance: mechanisms and implications. Current Opinion in Immunology, 2010, 22, 566-574.	2.4	45

PABLO A SILVEIRA

#	Article	IF	CITATIONS
37	Emerging roles for B lymphocytes in Type 1 diabetes. Expert Review of Clinical Immunology, 2009, 5, 311-324.	1.3	14
38	Interactions between B-Lymphocytes and Type 1 NKT Cells in Autoimmune Diabetes. Journal of Immunotoxicology, 2008, 5, 249-257.	0.9	9
39	Two genetic loci independently confer susceptibility to autoimmune gastritis. International Immunology, 2007, 19, 1135-1144.	1.8	19
40	Cellular Expression Requirements for Inhibition of Type 1 Diabetes by a Dominantly Protective Major Histocompatibility Complex Haplotype. Diabetes, 2007, 56, 424-430.	0.3	16
41	B cells and the BAFF/APRIL axis: fast-forward on autoimmunity and signaling. Current Opinion in Immunology, 2007, 19, 327-336.	2.4	253
42	Subcongenic analysis of genetic basis for impaired development of invariant NKT cells in NOD mice. Immunogenetics, 2007, 59, 705-712.	1.2	23
43	Invasion of the killer B's in type 1 diabetes. Frontiers in Bioscience - Landmark, 2007, 12, 2183.	3.0	9
44	B cells in the spotlight: innocent bystanders or major players in the pathogenesis of type 1 diabetes. Trends in Endocrinology and Metabolism, 2006, 17, 128-135.	3.1	78
45	Genes within the Idd5 and Idd9/11 Diabetes Susceptibility Loci Affect the Pathogenic Activity of B Cells in Nonobese Diabetic Mice. Journal of Immunology, 2006, 177, 7033-7041.	0.4	29
46	Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes resistant NOR/Lt mice. Genes and Immunity, 2005, 6, 528-538.	2.2	23
47	Genetic Control of Susceptibility to Autoimmune Gastritis. International Reviews of Immunology, 2005, 24, 55-62.	1.5	18
48	B Cell Selection Defects Underlie the Development of Diabetogenic APCs in Nonobese Diabetic Mice. Journal of Immunology, 2004, 172, 5086-5094.	0.4	71
49	The Role of B Lymphocytes as Key Antigen-Presenting Cells in the Development of T Cell-Mediated Autoimmune Type 1 Diabetes. , 2002, 6, 212-227.		47
50	Immunopathogenesis, loss of T cell tolerance and genetics of autoimmune gastritis. Autoimmunity Reviews, 2002, 1, 290-297.	2.5	36
51	The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. European Journal of Immunology, 2002, 32, 3657-3666.	1.6	126
52	The NOD Mouse as a Model of SLE. Autoimmunity, 2001, 34, 53-64.	1.2	48
53	Identification of the Gasa3 and Gasa4 autoimmune gastritis susceptibility genes using congenic mice and partitioned, segregative and interaction analyses. Immunogenetics, 2001, 53, 741-750.	1.2	26
54	Inhibition of Autoimmune Diabetes in Nonobese Diabetic Mice by Transgenic Restoration of H2-E MHC Class II Expression: Additive, But Unequal, Involvement of Multiple APC Subtypes. Journal of Immunology, 2001, 167, 2404-2410.	0.4	31

PABLO A SILVEIRA

#	Article	IF	CITATIONS
55	Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. International Immunology, 2001, 13, 887-896.	1.8	133
56	Autoreactive Diabetogenic T-Cells in NOD Mice Can Efficiently Expand From a Greatly Reduced Precursor Pool. Diabetes, 2001, 50, 1992-2000.	0.3	39
57	Linkage Analysis of Systemic Lupus Erythematosus Induced in Diabetes-Prone Nonobese Diabetic Mice by <i>Mycobacterium bovis</i> . Journal of Immunology, 2000, 165, 1673-1684.	0.4	43
58	α/β–T Cell Receptor (TCR)+CD4â^'CD8â^' (NKT) Thymocytes Prevent Insulin-dependent Diabetes Mellitus in Nonobese Diabetic (NOD)/Lt Mice by the Influence of Interleukin (IL)-4 and/or IL-10. Journal of Experimental Medicine, 1998, 187, 1047-1056.	4.2	441
59	Characterization and specificity of Bâ€cell responses in lupus induced by Mycobacterium bovis in NOD/Lt mice. Immunology, 1998, 95, 8-17.	2.0	20
60	Flow Cytometric Study of T Cell Development in NOD Mice Reveals a Deficiency in αβTCR+CD4â^²CD8â^²Thymocytes. Journal of Autoimmunity, 1997, 10, 279-285.	3.0	97