Claude Chelala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3586948/publications.pdf

Version: 2024-02-01

115 papers 7,648 citations

39 h-index 83 g-index

122 all docs $\begin{array}{c} 122 \\ \text{docs citations} \end{array}$

122 times ranked

17066 citing authors

#	Article	IF	Citations
1	The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Research, 2015, 43, W589-W598.	14.5	682
2	Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nature Genetics, 2014, 46, 176-181.	21.4	624
3	Activated Pancreatic Stellate Cells Sequester CD8+ T Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2013, 145, 1121-1132.	1.3	439
4	Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nature Genetics, 2006, 38, 682-687.	21.4	327
5	Retinoic Acid–Induced Pancreatic Stellate Cell Quiescence Reduces Paracrine Wnt–β-Catenin Signaling to Slow Tumor Progression. Gastroenterology, 2011, 141, 1486-1497.e14.	1.3	316
6	Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones. PLoS Biology, 2004, 2, e162.	5.6	290
7	Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death and Differentiation, 2008, 15, 1752-1759.	11.2	286
8	EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood, 2013, 122, 3165-3168.	1.4	274
9	Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common Matrix Response in Human Cancers. Cancer Discovery, 2018, 8, 304-319.	9.4	255
10	The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nature Communications, 2018, 9, 3667.	12.8	208
11	SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms. Bioinformatics, 2009, 25, 655-661.	4.1	187
12	SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine. Nucleic Acids Research, 2018, 46, W109-W113.	14.5	163
13	SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012) Tj ETQq1 🗵	1 0.78431 14.5	4 rgBT /Overl
14	Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nature Genetics, 2016, 48, 183-188.	21.4	160
15	Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood, 2015, 126, 1214-1223.	1.4	157
16	BioMart Central Portal: an open database network for the biological community. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar041-bar041.	3.0	145
17	SNPnexus: a web server for functional annotation of human genome sequence variation (2020) Tj ETQq $1\ 1\ 0.784$	4314 rgBT 14.5	/Overlock 10 140
18	Therapeutic Targeting of Integrin $\hat{l}\pm\nu\hat{l}^26$ in Breast Cancer. Journal of the National Cancer Institute, 2014, 106, .	6.3	132

#	Article	IF	CITATIONS
19	Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene, 2008, 27, 1951-1960.	5.9	131
20	Prognostic and Therapeutic Impact of Argininosuccinate Synthetase 1 Control in Bladder Cancer as Monitored Longitudinally by PET Imaging. Cancer Research, 2014, 74, 896-907.	0.9	122
21	Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. Journal of Pathology, 2013, 230, 107-117.	4.5	116
22	S100A4 Contributes to the Suppression of BNIP3 Expression, Chemoresistance, and Inhibition of Apoptosis in Pancreatic Cancer. Cancer Research, 2007, 67, 6786-6795.	0.9	108
23	A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma. Genome Medicine, 2014, 6, 105.	8.2	106
24	Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood, 2008, 112, 814-821.	1.4	97
25	A practical guide for the functional annotation of genetic variations using SNPnexus. Briefings in Bioinformatics, 2013, 14, 437-447.	6.5	90
26	Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma. Leukemia, 2018, 32, 1261-1265.	7.2	87
27	Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes Chromosomes and Cancer, 2008, 47, 729-739.	2.8	83
28	Inactivation of $TGF\hat{l}^2$ receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12493.	12.8	81
29	Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2016, 76, 4861-4871.	0.9	72
30	Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia. Leukemia, 2016, 30, 2179-2186.	7.2	69
31	The integrin $\hat{l}\pm\nu\hat{l}^26$ drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 2019, 249, 332-342.	4.5	66
32	Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene, 2019, 38, 5381-5395.	5.9	59
33	PTPN22 R620W Functional Variant in Type 1 Diabetes and Autoimmunity Related Traits. Diabetes, 2007, 56, 522-526.	0.6	57
34	Genome-Wide Analysis of Pancreatic Cancer Using Microarray-Based Techniques. Pancreatology, 2009, 9, 13-24.	1.1	52
35	Therapeutic senescence via GPCR activation in synovial fibroblasts facilitates resolution of arthritis. Nature Communications, 2020, 11 , 745.	12.8	49
36	Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1. Cell Reports, 2016, 16, 1604-1613.	6.4	47

#	Article	IF	CITATIONS
37	Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. American Journal of Cancer Research, 2015, 5, 3455-66.	1.4	47
38	Molecular Analysis of Precursor Lesions in Familial Pancreatic Cancer. PLoS ONE, 2013, 8, e54830.	2.5	44
39	Identification of ZDHHC14 as a novel human tumour suppressor gene. Journal of Pathology, 2014, 232, 566-577.	4.5	44
40	mTOR-dependent translation amplifies microglia priming in aging mice. Journal of Clinical Investigation, 2021, 131, .	8.2	43
41	S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells. Clinical and Experimental Metastasis, 2013, 30, 251-264.	3.3	41
42	Gene expression profiling of breast cancer in Lebanese women. Scientific Reports, 2016, 6, 36639.	3.3	41
43	Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Scientific Reports, 2016, 6, 37088.	3.3	39
44	Pancreatic Expression database: a generic model for the organization, integration and mining of complex cancer datasets. BMC Genomics, 2007, 8, 439.	2.8	38
45	A global insight into a cancer transcriptional space using pancreatic data: importance, findings and flaws. Nucleic Acids Research, 2011, 39, 7900-7907.	14.5	38
46	Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation. British Journal of Cancer, 2007, 96, 373-382.	6.4	37
47	Longitudinal copy number, whole exome and targeted deep sequencing of 'good risk' IGHV-mutated CLL patients with progressive disease. Leukemia, 2016, 30, 1301-1310.	7.2	37
48	Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene, 2014, 33, 4579-4588.	5.9	35
49	Novel Role for p $110\hat{1}^2$ PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells. PLoS Genetics, 2015, 11, e1005304.	3.5	35
50	S100P-Binding Protein, S100PBP, Mediates Adhesion through Regulation of Cathepsin Z in Pancreatic Cancer Cells. American Journal of Pathology, 2012, 180, 1485-1494.	3.8	34
51	Splice variants as novel targets in pancreatic ductal adenocarcinoma. Scientific Reports, 2017, 7, 2980.	3.3	34
52	PHLDA1 Mediates Drug Resistance in Receptor Tyrosine Kinase-Driven Cancer. Cell Reports, 2018, 22, 2469-2481.	6.4	34
53	Clinical and functional significance of α9β1 integrin expression in breast cancer: a novel cellâ€surface marker of the basal phenotype that promotes tumour cell invasion. Journal of Pathology, 2011, 223, 646-658.	4.5	33
54	IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome. Nucleic Acids Research, 2018, 46, e47-e47.	14.5	30

#	Article	IF	CITATIONS
55	The Pancreatic Expression database: 2011 update. Nucleic Acids Research, 2011, 39, D1023-D1028.	14.5	29
56	MLH1 deficiency leads to deregulated mitochondrial metabolism. Cell Death and Disease, 2019, 10, 795.	6.3	29
57	CEACAM6 attenuates adenovirus infection by antagonizing viral trafficking in cancer cells. Journal of Clinical Investigation, 2009, 119, 1604-1615.	8.2	28
58	The pancreatic expression database: recent extensions and updates. Nucleic Acids Research, 2014, 42, D944-D949.	14.5	28
59	Transcription-Mediated Chimeric RNAs in Prostate Cancer: Time to Revisit Old Hypothesis?. OMICS A Journal of Integrative Biology, 2014, 18, 615-624.	2.0	28
60	A Virus-Infected, Reprogrammed Somatic Cell–Derived Tumor Cell (VIReST) Vaccination Regime Can Prevent Initiation and Progression of Pancreatic Cancer. Clinical Cancer Research, 2020, 26, 465-476.	7.0	24
61	Online resources of cancer data: barriers, benefits and lessons. Briefings in Bioinformatics, 2011, 12, 52-63.	6.5	20
62	The Sharing Experimental Animal Resources, Coordinating Holdings (SEARCH) Framework: Encouraging Reduction, Replacement, and Refinement in Animal Research. PLoS Biology, 2017, 15, e2000719.	5.6	18
63	A genetic study and meta-analysis of the genetic predisposition of prostate cancer in a Chinese population. Oncotarget, 2016, 7, 21393-21403.	1.8	18
64	A <scp>HIF</scp> – <scp>LIMD</scp> 1 negative feedback mechanism mitigates the proâ€tumorigenic effects of hypoxia. EMBO Molecular Medicine, 2018, 10, .	6.9	17
65	p21 promotes oncolytic adenoviral activity in ovarian cancer and is a potential biomarker. Molecular Cancer, 2010, 9, 175.	19.2	16
66	Phosphoproteomic comparison of Pik3ca and Pten signalling identifies the nucleotidase NT5C as a novel AKT substrate. Scientific Reports, 2017, 7, 39985.	3.3	16
67	Field cancerization in breast cancer. Journal of Pathology, 2022, 257, 561-574.	4.5	16
68	MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma. Scientific Reports, 2018, 8, 7531.	3.3	15
69	â€`Multi-omic' data analysis using O-miner. Briefings in Bioinformatics, 2019, 20, 130-143.	6.5	15
70	Association between CLN3 (Neuronal Ceroid Lipofuscinosis, CLN3 Type) Gene Expression and Clinical Characteristics of Breast Cancer Patients. Frontiers in Oncology, 2015, 5, 215.	2.8	14
71	Recurrent somatic JAK-STAT pathway variants within a RUNX1-mutated pedigree. European Journal of Human Genetics, 2017, 25, 1020-1024.	2.8	13
72	Crohn's disease associated CARD15 (NOD2) variants are not involved in the susceptibility to type 1 diabetes. Molecular Genetics and Metabolism, 2005, 86, 379-383.	1.1	12

#	Article	IF	CITATIONS
7 3	The Pancreatic Expression Database: 2018 update. Nucleic Acids Research, 2018, 46, D1107-D1110.	14.5	12
74	Characterization of four subtypes in morphologically normal tissue excised proximal and distal to breast cancer. Npj Breast Cancer, 2020, 6, 38.	5.2	12
75	BCCTBbp: the Breast Cancer Campaign Tissue Bank bioinformatics portal. Nucleic Acids Research, 2015, 43, D831-D836.	14.5	11
76	SEARCHBreast: a new resource to locate and share surplus archival material from breast cancer animal models to help address the 3Rs. Breast Cancer Research and Treatment, 2016, 156, 447-452.	2.5	11
77	O-miner: an integrative platform for automated analysis and mining of -omics data. Nucleic Acids Research, 2012, 40, W560-W568.	14.5	10
78	Using BioMart as a framework to manage and query pancreatic cancer data. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar024-bar024.	3.0	9
79	Pancreatic cancer tissue banks: where are we heading?. Future Oncology, 2016, 12, 2661-2663.	2.4	9
80	COVID-19 in patients with hepatobiliary and pancreatic diseases: a single-centre cross-sectional study in East London. BMJ Open, 2021, 11, e045077.	1.9	9
81	MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. Oncolmmunology, 2022, 11 , .	4.6	8
82	A Web-Based Platform for Mining Pancreatic Expression Datasets. Pancreatology, 2009, 9, 340-343.	1.1	7
83	SEARCHBreast Workshop Proceedings: 3D Modelling of Breast Cancer. ATLA Alternatives To Laboratory Animals, 2015, 43, 367-375.	1.0	7
84	<i>NKAIN2</i> functions as a novel tumor suppressor in prostate cancer. Oncotarget, 2016, 7, 63793-63803.	1.8	7
85	Longitudinal profiling of circulating tumour DNA for tracking tumour dynamics in pancreatic cancer. BMC Cancer, 2022, 22, 369.	2.6	7
86	The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Reports, 2020, 21, e48260.	4.5	6
87	Sex-linked recombination variation and distribution of disease-related genes. Gene, 2005, 346, 29-39.	2.2	5
88	BCNTB bioinformatics: the next evolutionary step in the bioinformatics of breast cancer tissue banking. Nucleic Acids Research, 2018, 46, D1055-D1061.	14.5	4
89	SMAC, a computational system to link literature, biomedical and expression data. Scientific Reports, 2019, 9, 10480.	3.3	3
90	INCONSISTENCIES BETWEEN MAPS OF HUMAN CHROMOSOME 22 CORRELATE WITH INCREASED FREQUENCY OF DISEASE-RELATED LOCI. Journal of Biological Systems, 2002, 10, 303-317.	1.4	2

#	Article	IF	Citations
91	SEARCHBreast: a new online resource to make surplus material from in vivo models of breast cancer visible and accessible to researchers. Breast Cancer Research, 2016, 18, 59.	5.0	2
92	The role of the microenvironment in the invasive phenotype of familial pituitary tumours. Endocrine Abstracts, 0 , , .	0.0	2
93	A biobank perspective on use of tissue samples donated by trial participants. Lancet Oncology, The, 2022, 23, e205.	10.7	2
94	Introducing SEARCHBreast: a virtual resource to facilitate sharing of surplus animal material developed for breast cancer research. Npj Breast Cancer, 2016, 2, 16020.	5.2	1
95	A Genome-Wide Map of Acquired Uniparental Disomy in Acute Myeloid Leukemia Blood, 2007, 110, 996-996.	1.4	1
96	An Integrated Systems Approach to the Study of Pancreatic Cancer. , 2012, , 83-111.		0
97	Genomic analysis reveals epigenetic †addiction†underpinning follicular lymphoma and its transformation †a rationale for targeted epigenetic therapies. Clinical Epigenetics, 2013, 5, .	4.1	0
98	Identification of ZDHHC14 as a novel human tumour suppressor gene.J Pathol2014; 232: 566-577. Journ of Pathology, 2014, 234, 134-134.	nal 4.5	0
99	SEARCHBreast: An online resource designed to increase the efficiency of using materials derived from breast cancer studies in animals. Journal of Pathology, 2016, 240, 120-120.	4.5	0
100	HiPPO and PANDA: Two Bioinformatics Tools to Support Analysis of Mass Cytometry Data. Journal of Computational Biology, 2020, 27, 1283-1294.	1.6	0
101	Validation of a Novel, Flashâ€Freezing Method: Aluminum Platform. Current Protocols in Essential Laboratory Techniques, 2020, 21, e46.	2.6	0
102	PO20. Defining molecular signatures to personalise management of patients with early breast cancer. European Journal of Surgical Oncology, 2021, 47, e301.	1.0	0
103	Abstract 1537: Role of S100PBP in pancreatic adenocarcinoma. , 2011, , .		0
104	Whole Genome Sequencing in Sequential Biopsies Reveals the Genetic Evolution of Follicular Lymphoma to Transformed Follicular Lymphoma. Blood, 2012, 120, 145-145.	1.4	0
105	Invasion signature' revealed by the analysis of AIP positive and AIP mutation negative human pituitary adenomas. Endocrine Abstracts, 0, , 1-1.	0.0	0
106	Gene expression profiling of familial and sporadic pituitary adenomas. Endocrine Abstracts, 0, , .	0.0	0
107	Investigating The Role Of MLL2 (Mll4) In B Cell Development. Blood, 2013, 122, 343-343.	1.4	0
108	Familial AML With Germline CEBPA Mutations: Extended Clinical Outcomes and Analysis Of Secondary Mutations Using Whole Exome Sequencing. Blood, 2013, 122, 740-740.	1.4	0

#	Article	IF	CITATIONS
109	Abstract 1431: Gene expression analysis of argininosuccinate synthetase loss and the effects of pegylated arginine deiminase in malignant pleural mesothelioma. , 2014, , .		0
110	Potential molecular mechanism of AIP-mediated cellular invasion. Endocrine Abstracts, 0, , .	0.0	0
111	Investigation of the invasive phenotype of AIP-mutated pituitary adenomas. Endocrine Abstracts, 0, , .	0.0	0
112	Genomic Disruption of the Histone Methyltransferase SETD2 in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 365-365.	1,4	0
113	The SEARCHBreast Portal: A Virtual Bioresource to Facilitate the Sharing of Surplus Animal Materials Derived from Breast Cancer Studies. Open Journal of Bioresources, 2016, 3, .	1.5	0
114	The clinical, pathological and molecular differences between sparsely and densely granulated somatotroph adenomas. Endocrine Abstracts, 0, , .	0.0	0
115	Alloresponses of Human T-Cells from Adult Peripheral Blood and Umbilical Cord Blood Are Differentially Impacted By Lenalidomide. Blood, 2016, 128, 5714-5714.	1.4	0