Zekeriya Parlak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3586421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field. Mechatronics, 2012, 22, 890-903.	3.3	107
2	Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation. International Journal of Mechanical Sciences, 2012, 64, 22-31.	6.7	52
3	Optimal Magnetorheological Damper Configuration Using the Taguchi Experimental Design Method. Journal of Mechanical Design, Transactions of the ASME, 2013, 135, .	2.9	31
4	Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries. Heat and Mass Transfer, 2018, 54, 3317-3328.	2.1	25
5	Geometrical optimisation of vehicle shock dampers with magnetorheological fluid. International Journal of Vehicle Design, 2010, 54, 371.	0.3	17
6	A comparative evaluation of semi-active control algorithms for real-time seismic protection of buildings via magnetorheological fluid dampers. Journal of Building Engineering, 2021, 42, 102795.	3.4	16
7	Investigation of Parameters Affecting Axial Load in an End Suction Centrifugal Pump by Numerical Analysis. Journal of Applied Fluid Mechanics, 2019, 12, 1615-1627.	0.2	14
8	One-way coupled numerical model utilizing Viscoelastic Maxwell model for MR damper. Journal of Intelligent Material Systems and Structures, 2022, 33, 2391-2404.	2.5	4
9	Dynamic characterisation of a vehicle magnetorheological shock absorber. International Journal of Vehicle Design, 2012, 59, 129.	0.3	3
10	A New Rheological Model of Magnetorheological Fluids for CFD: Comparison and Validation. , 2018, , .		3
11	Experimental investigation of design parameters of temperature controlled semi-active shock absorber under different currents and velocities. Mechanics Based Design of Structures and Machines, 2019, 47, 629-646.	4.7	2
12	Proposal of a mathematical model for describing magnetorheological fluid dynamic behavior. Journal of Mechanical Science and Technology, 2019, 33, 3885-3893.	1.5	1
13	Investigation of a non-Newtonian MR fluid flow between parallel plates by developed CFD code for different numerical schemes. Smart Materials and Structures, 2022, 31, 075006.	3.5	1
14	A new methodology to describe nonlinear characterization depending on temperature of a semi-active absorber based on Bouc-Wen model. Gazi University Journal of Science, 0, , .	1.2	0
15	Parametric Numerical Study of Turbulent Airflow in a Wavy Channel Under Pulsatile Conditions. Heat Transfer Engineering, 0, , 1-17.	1.9	0