Joost W M Frenken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3586318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomistic mechanisms for frictional energy dissipation during continuous sliding. Scientific Reports, 2021, 11, 19964.	1.6	2
2	Effect of rubidium incorporation on the optical properties and intermixing in Mo/Si multilayer mirrors for EUV lithography applications. Applied Surface Science, 2020, 507, 144951.	3.1	5
3	On the Origin of Frictional Energy Dissipation. Tribology Letters, 2020, 68, 1.	1.2	16
4	The Coalescence Behavior of Two-Dimensional Materials Revealed by Multiscale <i>In Situ</i> Imaging during Chemical Vapor Deposition Growth. ACS Nano, 2020, 14, 1902-1918.	7.3	35
5	Response to Comment on "On the Origin of Frictional Energy Dissipationâ€; by B.N.J. Persson. Tribology Letters, 2020, 68, 1.	1.2	0
6	In situ observations of an active MoS2 model hydrodesulfurization catalyst. Nature Communications, 2019, 10, 2546.	5.8	47
7	The Pressure Gap for Thiols: Methanethiol Self-Assembly on Au(111) from Vacuum to 1 bar. Journal of Physical Chemistry C, 2019, 123, 12382-12389.	1.5	7
8	On the Non-trivial Origin of Atomic-Scale Patterns in Friction Force Microscopy. Tribology Letters, 2019, 67, 15.	1.2	9
9	Tunable superlubricity of 2-dimensional materials. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24386-24387.	3.3	3
10	The effect of oxidation and resulfidation on (Ni/Co)MoS2 hydrodesulfurisation catalysts. Applied Catalysis B: Environmental, 2019, 243, 145-150.	10.8	47
11	Nucleation, Alloying, and Stability of Co–Re Bimetallic Nanoparticles on Al2O3/NiAl(110). Journal of Physical Chemistry C, 2018, 122, 8967-8975.	1.5	3
12	Formation of a monolayer h-BN nanomesh on Rh (111) studied using in-situ STM. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	4
13	Structural Dynamics of Al ₂ O ₃ /NiAl(110) During Film Growth in NO ₂ . Journal of Physical Chemistry B, 2018, 122, 788-793.	1.2	5
14	Improving the thermodynamic stability and EUV reflectance in Mo/Si multilayer mirrors by rubidium incorporation (Conference Presentation). , 2018, , .		0
15	Why do we "feel―atoms in nano-scale friction?. Colloid Journal, 2017, 79, 81-86.	0.5	4
16	From dull to shiny: A novel setup for reflectance difference analysis under catalytic conditions. Review of Scientific Instruments, 2017, 88, 023704.	0.6	15
17	In Situ Optical Reflectance Difference Observations of CO Oxidation over Pd(100). Journal of Physical Chemistry C, 2017, 121, 11407-11415.	1.5	21
18	Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chemical Society Reviews, 2017, 46, 4347-4374.	18.7	202

#	Article	IF	CITATIONS
19	In situ studies of NO reduction by H ₂ over Pt using surface X-ray diffraction and transmission electron microscopy. Physical Chemistry Chemical Physics, 2017, 19, 8485-8495.	1.3	16
20	Oxidation of CO on Pd(1Â0Â0): on the structural evolution of the PdO layer during the self sustained oscillation regime. Journal of Lithic Studies, 2017, 3, 89-94.	0.1	9
21	Live Observations of Catalysts Using High-Pressure Scanning Probe Microscopy. Springer Series in Chemical Physics, 2017, , 1-30.	0.2	4
22	Frenken to receive MRS Innovation in Materials Characterization Award. MRS Bulletin, 2017, 42, 320.	1.7	0
23	Observing the oxidation of platinum. Nature Communications, 2017, 8, 429.	5.8	109
24	Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment. Ultramicroscopy, 2017, 182, 233-242.	0.8	8
25	Seeing dynamic phenomena with live scanning tunneling microscopy. MRS Bulletin, 2017, 42, 834-841.	1.7	5
26	Energy dissipation accompanying atomic-scale friction: Nonlocality and memory. Colloid Journal, 2017, 79, 341-345.	0.5	1
27	In situ TEM observation of the Boudouard reaction: multi-layered graphene formation from CO on cobalt nanoparticles at atmospheric pressure. Faraday Discussions, 2017, 197, 337-351.	1.6	29
28	<i>In situ</i> TEM Observation of MultiLayer Graphene Formation from CO on Cobalt Nanoparticles at Atmospheric Pressure. Microscopy and Microanalysis, 2017, 23, 896-897.	0.2	3
29	Non-Local and Memory Character of Frictional Energy Dissipation on Atomic Scale. Engineering, 2017, 09, 14-21.	0.4	Ο
30	Combined scanning probe microscopy and x-ray scattering instrument for in situ catalysis investigations. Review of Scientific Instruments, 2016, 87, 113705.	0.6	12
31	Graphene/Rh(111) Structure Studied Using In-Situ Scanning Tunneling Microscopy. Chinese Physics Letters, 2016, 33, 116101.	1.3	0
32	Shape and Size of Cobalt Nanoislands Formed Spontaneously on Cobalt Terraces during Fischer–Tropsch Synthesis. Journal of Physical Chemistry Letters, 2016, 7, 1996-2001.	2.1	32
33	Instability of NiMoS ₂ and CoMoS ₂ Hydrodesulfurization Catalysts at Ambient Conditions: A Quasi in Situ High-Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study. Journal of Physical Chemistry C, 2016, 120, 19204-19211.	1.5	17
34	Tuning the Properties of Molybdenum Oxide on Al ₂ O ₃ /NiAl(110): Metal versus Oxide Deposition. Journal of Physical Chemistry C, 2016, 120, 19737-19743.	1.5	7
35	In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nature Chemistry, 2016, 8, 929-934.	6.6	94
36	Erratum to "High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(1 1 0)―[Catal. Today 244 (2015) 85–95]. Catalysis Today, 2015, 256, 384.	2.2	3

#	Article	IF	CITATIONS
37	Fabrication of high-aspect ratio silicon nanopillars for tribological experiments. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2015, 14, 044506.	1.0	11
38	<i>BINoculars</i> : data reduction and analysis software for two-dimensional detectors in surface X-ray diffraction. Journal of Applied Crystallography, 2015, 48, 1324-1329.	1.9	50
39	High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(110). Catalysis Today, 2015, 244, 85-95.	2.2	31
40	The <i>ReactorAFM</i> : Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions. Review of Scientific Instruments, 2015, 86, 033706.	0.6	31
41	Experimental Observations of Superlubricity and Thermolubricity. Nanoscience and Technology, 2015, , 139-156.	1.5	1
42	The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions. Review of Scientific Instruments, 2014, 85, 083703.	0.6	74
43	The physics of atomicâ€scale friction: Basic considerations and open questions. Physica Status Solidi (B): Basic Research, 2014, 251, 711-736.	0.7	84
44	Scanning Tunneling Microscopy at Elevated Pressure. Springer Series in Materials Science, 2014, , 181-206.	0.4	1
45	Superlubric to stick-slip sliding of incommensurate graphene flakes on graphite. Physical Review B, 2013, 88, .	1.1	98
46	Kinetics of Graphene Formation on Rh(111) Investigated by In Situ Scanning Tunneling Microscopy. ACS Nano, 2013, 7, 7028-7033.	7.3	39
47	Graphene formation on metal surfaces investigated by <i>in-situ</i> scanning tunneling microscopy. New Journal of Physics, 2012, 14, 053033.	1.2	36
48	Reversible formation of a PdCx phase in Pd nanoparticles upon CO and O2 exposure. Physical Chemistry Chemical Physics, 2012, 14, 4796.	1.3	47
49	The problem of critical damping in nanofriction. Colloid Journal, 2012, 74, 569-572.	0.5	12
50	The Active Phase of Palladium during Methane Oxidation. Journal of Physical Chemistry Letters, 2012, 3, 678-682.	2.1	183
51	Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures. Physical Chemistry Chemical Physics, 2011, 13, 13167.	1.3	104
52	A general model of metal underpotential deposition in the presence of thiol-based additives based on an in situ STM study. Physical Chemistry Chemical Physics, 2011, 13, 16095.	1.3	12
53	The effect of zirconia and titanium implant abutments on light reflection of the supporting soft tissues. Clinical Oral Implants Research, 2011, 22, 1172-1178.	1.9	111
54	Microscale Friction Reduction by Normal Force Modulation in MEMS. , 2011, , 339-350.		0

#	Article	IF	CITATIONS
55	MEMS-based fast scanning probe microscopes. Ultramicroscopy, 2010, 110, 599-604.	0.8	35
56	High-pressure STM study of NO reduction by CO on Pt(100). Catalysis Today, 2010, 154, 61-67.	2.2	17
57	When mica and water meet. Nature, 2010, 464, 38-39.	13.7	19
58	The role of steps in surface catalysis and reaction oscillations. Nature Chemistry, 2010, 2, 730-734.	6.6	184
59	The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction. Beilstein Journal of Nanotechnology, 2010, 1, 163-171.	1.5	11
60	How Boron Nitride Forms a Regular Nanomesh on Rh(111). Physical Review Letters, 2010, 104, 096102.	2.9	73
61	Response to "Comment on â€~MEMS-based high speed scanning probe microscopy'―[Rev. Sci. Instrum. 117101 (2010)]. Review of Scientific Instruments, 2010, 81, 117102.	81. 0.6	2
62	Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis. Review of Scientific Instruments, 2010, 81, 014101.	0.6	69
63	Microscale Friction Reduction by Normal Force Modulation in MEMS. Journal of Adhesion Science and Technology, 2010, 24, 2669-2680.	1.4	73
64	Reply to "Comment on †Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditionsâ€â€™. Journal of Physical Chemistry C, 2010, 114, 22372-22373.	1.5	14
65	Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditions. Journal of Physical Chemistry C, 2010, 114, 4580-4583.	1.5	88
66	Comment on "CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium and Platinum― Journal of Physical Chemistry C, 2010, 114, 6875-6876.	1.5	54
67	MEMS-based high speed scanning probe microscopy. Review of Scientific Instruments, 2010, 81, 043702.	0.6	27
68	Atomic-scale friction experiments reconsidered in the light of rapid contact dynamics. Physical Review B, 2009, 80, .	1.1	16
69	Videoâ€rate scanning probe control challenges: setting the stage for a microscopy revolution. Asian Journal of Control, 2009, 11, 110-129.	1.9	51
70	Experimental Evidence for Ice Formation at Room Temperature. Physical Review Letters, 2008, 101, 036101.	2.9	115
71	Torque and Twist against Superlubricity. Physical Review Letters, 2008, 100, 046102.	2.9	190
72	Structure and reactivity of a model catalyst alloy under realistic conditions. Journal of Physics Condensed Matter, 2008, 20, 184018.	0.7	47

#	Article	IF	CITATIONS
73	The crucial role of temperature in atomic scale friction. Journal of Physics Condensed Matter, 2008, 20, 354003.	0.7	44
74	Thermolubricity in atomic-scale friction. Physical Review B, 2008, 78, .	1.1	65
75	Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New Journal of Physics, 2007, 9, 398-398.	1.2	35
76	A â€~nano-battering ram' for measuring surface forces: obtaining force–distance curves and sidewall stiction data with a MEMS device. Journal of Micromechanics and Microengineering, 2007, 17, S91-S97.	1.5	23
77	Superlubricity between Graphite Surfaces. , 2007, , 199-206.		0
78	Oxidation of Pd(553): From ultrahigh vacuum to atmospheric pressure. Physical Review B, 2007, 76, .	1.1	70
79	Evidence for Contact Delocalization in Atomic Scale Friction. Physical Review Letters, 2007, 99, 166102.	2.9	32
80	The Reactor-STM: A Real-Space Probe for <i>Operando</i> Nanocatalysis. MRS Bulletin, 2007, 32, 1015-1021.	1.7	29
81	The return of the kink. Surface Science, 2007, 601, 13-23.	0.8	6
82	The Leiden MEMS Tribometer: Real Time Dynamic Friction Loop Measurements With an On-Chip Tribometer. Tribology Letters, 2007, 28, 149-156.	1.2	104
83	Stick-Slip Motion in Spite of a Slippery Contact: Do We Get What We See in Atomic Friction?. Physical Review Letters, 2006, 97, 166103.	2.9	50
84	Bringing friction to a halt. Nature Nanotechnology, 2006, 1, 20-21.	15.6	16
85	Capillary Condensation in Atomic Scale Friction: How Water Acts like a Glue. Physical Review Letters, 2006, 96, 166103.	2.9	155
86	Bistability and oscillations in CO oxidation studied with scanning tunnelling microscopy inside a reactor. Catalysis Today, 2005, 105, 234-243.	2.2	85
87	Model experiments of superlubricity of graphite. Surface Science, 2005, 576, 197-211.	0.8	169
88	Looking at Heterogeneous Catalysis at Atmospheric Pressure Using Tunnel Vision. Topics in Catalysis, 2005, 36, 43-54.	1.3	74
89	Pushing the limits of SPM. Materials Today, 2005, 8, 20-25.	8.3	25
90	Slippery Nanoworld. Europhysics News, 2005, 36, 6-8.	0.1	1

#	Article	IF	CITATIONS
91	Thermally induced suppression of friction at the atomic scale. Physical Review E, 2005, 71, 065101.	0.8	146
92	Structure and Reactivity of Surface Oxides on Pt(110) during Catalytic CO Oxidation. Physical Review Letters, 2005, 95, 255505.	2.9	327
93	Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity. Review of Scientific Instruments, 2005, 76, 043704.	0.6	35
94	Scanning probe microscopes go video rate and beyond. Review of Scientific Instruments, 2005, 76, 053710.	0.6	206
95	Model calculations of superlubricity of graphite. Physical Review B, 2004, 70, .	1.1	174
96	Diffusion and incorporation of a surfactant: In on (vicinal) Cu(001). Surface Science, 2004, 555, 11-19.	0.8	8
97	Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surface Science, 2004, 552, 229-242.	0.8	240
98	Superlubricity of Graphite. Physical Review Letters, 2004, 92, 126101.	2.9	1,145
99	The electron conduction of photosynthetic protein complexes embedded in a membrane. FEBS Letters, 2004, 560, 109-114.	1.3	33
100	Thermally activated domain boundary formation on a missing row reconstructed surface: Au(110). Surface Science, 2003, 547, 71-84.	0.8	12
101	The Ring Structure and Organization of Light Harvesting 2 Complexes in a Reconstituted Lipid Bilayer, Resolved by Atomic Force Microscopy. Biophysical Journal, 2003, 84, 2483-2491.	0.2	44
102	Grains, Growth, and Grooving. Physical Review Letters, 2003, 91, 026101.	2.9	115
103	A Novel Frictional Force Microscope with 3-Dimensional Force Detection. , 2003, , 115-122.		0
104	Asymmetric and symmetric Wulff constructions of island shapes on a missing-row reconstructed surface. Physical Review B, 2002, 65, .	1.1	11
105	Domain boundary formation on Au(110). Europhysics Letters, 2002, 59, 559-565.	0.7	7
106	CO Oxidation on Pt(110): Scanning Tunneling Microscopy Inside a High-Pressure Flow Reactor. Physical Review Letters, 2002, 89, 046101.	2.9	448
107	Diffusion in a surface: the atomic slide puzzle. Applied Physics A: Materials Science and Processing, 2002, 75, 11-15.	1.1	4
108	The effect of stoichiometry on the stability of steps on TiO2(1 1 0). Applied Surface Science, 2002, 201, 161-170.	3.1	11

#	Article	lF	CITATIONS
109	Shape and decay of two- and three-dimensional islands on Au(). Surface Science, 2002, 515, 344-358.	0.8	12
110	Shape and evolution of vacancy islands on a missing row reconstructed surface: Au(). Surface Science, 2002, 518, 21-38.	0.8	14
111	Vacancy diffusion in the Cu surface I: an STM study. Surface Science, 2002, 521, 10-25.	0.8	48
112	Vacancy diffusion in the Cu() surface II: Random walk theory. Surface Science, 2002, 521, 26-33.	0.8	28
113	Nothing Moves a Surface: Vacancy Mediated Surface Diffusion. Physical Review Letters, 2001, 86, 1562-1565.	2.9	130
114	The influence of substrate defects on the growth rate of palladium nanoparticles on a TiO2(110) surface. Surface Science, 2001, 474, 28-36.	0.8	56
115	Automated detection of particles, clusters and islands in scanning probe microscopy images. Surface Science, 2001, 494, 43-52.	0.8	23
116	How Asymmetric Islands Become Symmetric. Physical Review Letters, 2001, 86, 5938-5941.	2.9	24
117	Comment on "Real Space Investigation of the Roughening and Deconstruction Transitions of Au(110)â€. Physical Review Letters, 2001, 87, 039603.	2.9	13
118	Towards the Ideal Nano-Friction Experiment. , 2001, , 137-150.		0
119	Fabrication of a novel scanning probe device for quantitative nanotribology. Sensors and Actuators A: Physical, 2000, 84, 18-24.	2.0	28
120	Anomalous Shape and Decay of Islands on Au(110). Physical Review Letters, 2000, 84, 1966-1969.	2.9	33
121	Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2(110). Surface Science, 2000, 457, 295-310.	0.8	92
122	An experimental verification of the theory of surface roughening from a quantitative STM study. Surface Science, 2000, 448, 142-154.	0.8	8
123	Direct observation and analysis of kink dynamics. Surface Science, 2000, 447, 25-38.	0.8	17
124	Monte Carlo simulation on the roughening of vicinal surfaces. Surface Science, 2000, 448, 155-163.	0.8	4
125	Are Vicinal Metal Surfaces Stable?. Physical Review Letters, 1999, 82, 3500-3503.	2.9	112
126	Real-Space Measurement of Surface Roughening. Physical Review Letters, 1999, 82, 1728-1731.	2.9	27

#	Article	IF	CITATIONS
127	On the smoothing of rough surfaces. Journal of Physics Condensed Matter, 1999, 11, 4349-4365.	0.7	21
128	The step distance dependence of the kink creation energy determined on vicinal silver surfaces. Surface Science, 1999, 432, 21-26.	0.8	4
129	The "Reactor STM†A scanning tunneling microscope for investigation of catalytic surfaces at semi-industrial reaction conditions. Review of Scientific Instruments, 1998, 69, 3879-3884.	0.6	85
130	Design and performance of a programmable-temperature scanning tunneling microscope. Review of Scientific Instruments, 1998, 69, 2072-2080.	0.6	45
131	Spontaneous breaking of nanowires between a STM tip and the Pb(110) surface. Physical Review B, 1998, 58, 2185-2190.	1.1	9
132	Oxygen dissociation on Ag(110): a ruin game. Surface Science, 1997, 375, 141-149.	0.8	10
133	A model system for scandate cathodes. Applied Surface Science, 1997, 111, 35-41.	3.1	50
134	Surface Energetics and Dynamics Measured from STM Movies. NATO ASI Series Series B: Physics, 1997, , 463-474.	0.2	0
135	Growth mode and interface structure of Ag on the HF-treated Si(111):H surface. Surface Science, 1996, 350, 229-238.	0.8	32
136	Difference in surface melting between indium (110) and (011). Surface Science, 1996, 365, 103-117.	0.8	13
137	Surface-melting induced faceting of aluminium. Surface Science, 1996, 366, 587-596.	0.8	5
138	Surface energetics and thermal roughening of Ag(115) studied with STM movies. Physical Review B, 1996, 53, R13299-R13302.	1.1	40
139	Step and kink dynamics on Au(110) and Pb(111) studied with a high-speed STM. Physical Review B, 1995, 52, 11387-11397.	1.1	80
140	Design and performance of a highâ€ŧemperature, highâ€speed scanning tunneling microscope. Review of Scientific Instruments, 1995, 66, 4557-4565.	0.6	53
141	Jump to contact and neck formation between Pb surfaces and a STM tip. Surface Science, 1995, 340, 231-244.	0.8	22
142	Temperature dependence of surface-melting-induced faceting of surfaces vicinal to Pb(111). Physical Review B, 1994, 49, 13798-13808.	1.1	30
143	Anharmonicity but absence of surface melting on Al(001). Physical Review B, 1994, 50, 11132-11141.	1.1	37
144	Two-dimensional position sensitive detection for medium-energy ion scattering. Nuclear Instruments & Methods in Physics Research B, 1994, 94, 137-149.	0.6	13

#	Article	IF	CITATIONS
145	Structure analysis of the HF-treated Si(111):H surface with medium-energy ion scattering. Surface Science, 1994, 321, 261-266.	0.8	11
146	Surface melting: dry, slippery, wet and faceted surfaces. Surface Science, 1994, 307-309, 728-734.	0.8	15
147	Surface Melting: An Experimental Overview. Chemical Physics of Solid Surfaces, 1994, 7, 259-290.	0.3	1
148	Structure determination of the NiSi2(111) surface with medium-energy ion backscattering from individual monolayers. Surface Science, 1993, 290, 255-266.	0.8	10
149	Oxidation of Al(111). Surface Science, 1993, 287-288, 438-442.	0.8	24
150	New views on surface melting obtained with STM and ion scattering. Surface Science, 1993, 283, 283-289.	0.8	23
151	The initial stages of the oxidation of Al(111). I. Surface Science, 1993, 296, 131-140.	0.8	17
152	The initial stages of the oxidation of Al(111). II. Surface Science, 1993, 296, 141-148.	0.8	11
153	Formation of epitaxial βâ€FeSi2films on Si(001) as studied by mediumâ€energy ion scattering. Journal of Applied Physics, 1993, 73, 1104-1109.	1.1	44
154	Thermal roughening investigated by scanning tunnelling microscopy. Faraday Discussions, 1993, 95, 27.	1.6	2
155	The adsorption of Ba on Ag(111). Journal of Physics Condensed Matter, 1993, 5, 5411-5428.	0.7	20
156	Observation of Surface-Melting-Induced Faceting. Europhysics Letters, 1993, 21, 43-48.	0.7	32
157	Jump to contact, neck formation, and surface melting in the scanning tunneling microscope. Physical Review Letters, 1993, 70, 3907-3910.	2.9	93
158	Step dynamics on Au(110) studied with a high-temperature, high-speed scanning tunneling microscope. Physical Review Letters, 1993, 71, 3517-3520.	2.9	129
159	CoSi2/Si(111) interface: Determination of the interfacial metal coordination number. Physical Review B, 1992, 45, 6700-6708.	1.1	18
160	On the displacement statistics of an individual step edge in a vicinal surface. Surface Science, 1992, 275, 142-155.	0.8	6
161	Incomplete melting of Pb(001) and vicinal surfaces. Surface Science, 1992, 275, 383-394.	0.8	56
162	Sulfur adatom diffusion on the Cu(111) surface. Surface Science, 1991, 259, 288-300.	0.8	37

#	Article	IF	CITATIONS
163	Order-disorder transitions at the Ge(111) surface. Surface Science, 1991, 241, 335-345.	0.8	83
164	Anisotropy in surface melting of Pb(110). Surface Science, 1991, 244, 259-265.	0.8	23
165	Calculation of ion scattering yields from simulated crystal surfaces: theory and application to melting and non-melting Al surfaces. Surface Science, 1991, 256, 385-396.	0.8	37
166	Order-disorder transitions at surfaces. Surface Science, 1991, 251-252, 1-5.	0.8	25
167	Monolayer resolution in medium-energy ion-scattering experiments on theNiSi2(111) surface. Physical Review Letters, 1991, 67, 1134-1137.	2.9	81
168	Combined (1×2)→(1×1) transition and atomic roughening of Ge(001) studied with surface x-ray diffraction. Physical Review B, 1991, 44, 1134-1138.	1.1	36
169	Thermal roughening studied by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 293-296.	0.9	58
170	Anisotropic diffusion at a melting surface studied with He-atom scattering. Physical Review B, 1990, 41, 938-946.	1.1	104
171	Surface melting of Pb(110): A compilation of experimental results. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2147-2151.	0.9	12
172	X-ray intensity oscillations occurring during growth of Ge on Ge(111)-a comparison with RHEED. Journal of Physics Condensed Matter, 1989, 1, SB213-SB214.	0.7	4
173	X-ray reflectivity study of surface-initiated melting: Density profile at the Pb(110) surface. Surface Science Letters, 1989, 222, L845-L852.	0.1	0
174	X-ray reflectivity study of surface-initiated melting: Density profile at the pb(110) surface. Surface Science, 1989, 222, L845-L852.	0.8	35
175	He scattering study of diffusion at a melting surface. Surface Science, 1989, 211-212, 21-30.	0.8	20
176	Structure analysis of crystal surfaces and interfaces with medium-energy ion beams. Nuclear Instruments & Methods in Physics Research B, 1988, 33, 884-890.	0.6	4
177	Self-diffusion at a melting surface observed by He scattering. Physical Review Letters, 1988, 60, 1727-1730.	2.9	117
178	Evidence for anomalous thermal expansion at a crystal surface. Physical Review Letters, 1987, 58, 401-404.	2.9	86
179	Crystal-Face Dependence of Surface Melting. Physical Review Letters, 1987, 59, 2678-2681.	2.9	292
180	Missing-row surface reconstruction of Ag(110) induced by potassium adsorption. Physical Review Letters, 1987, 59, 2307-2310.	2.9	96

#	Article	IF	CITATIONS
181	Rutherford Backscattering Investigations of Melting and Premelting Phenomena at Surfaces. Physica Scripta, 1987, T19B, 382-386.	1.2	14
182	Multilayer relaxation at the Ag(110) surface. Surface Science, 1987, 188, 335-349.	0.8	50
183	Observation of surface-initiated melting. Physical Review B, 1986, 34, 7506-7516.	1.1	303
184	Dynamics and melting of surfaces. Surface Science, 1986, 178, 382-395.	0.8	53
185	Multilayer relaxation at the Pb(110) surface. Surface Science, 1986, 172, 319-336.	0.8	49
186	Multilayer relaxation at the Pb(110) surface. Surface Science Letters, 1986, 172, A342.	0.1	0
187	A continuous-flow helium cryostat and sample holder with unrestricted manipulation for ion-scattering experiments in uhv. Vacuum, 1986, 36, 259-262.	1.6	5
188	Theory and simulation of high-energy ion scattering experiments for structure analysis of surfaces and interfaces. Nuclear Instruments & Methods in Physics Research B, 1986, 17, 334-343.	0.6	137
189	Ion beam crystallography of solid and molten surfaces. Festkörperprobleme, 1985, , 523-530.	0.7	0
190	Real-space determination of atomic structure and bond relaxation at theNiSi2-Si(111) interface. Physical Review Letters, 1985, 54, 827-830.	2.9	112
191	Observation of Surface Melting. Physical Review Letters, 1985, 54, 134-137.	2.9	729
192	Silicon strained layers grown on GaP(001) by molecular beam epitaxy. Journal of Applied Physics, 1985, 58, 3097-3103.	1.1	40
193	Niâ€Si(111) interface: Growth of Ni2Si islands at room temperature. Applied Physics Letters, 1984, 45, 41-43.	1.5	52
194	Static and dynamic displacements of nickel atoms in clean and oxygen covered Ni(001) surfaces. Surface Science, 1983, 135, 147-163.	0.8	93
195	Relation between Surface Relaxation and Surface Force Constants in Clean and Oxygen-Covered Ni(001). Physical Review Letters, 1983, 51, 1876-1879.	2.9	146
196	The oxidation of Ni(100) studied by medium energy ion scattering. Surface Science, 1981, 112, 261-271.	0.8	34
197	The Physics of Atomic-scale Friction: Basic Considerations and  Open Questions. , 0, , 913-962.		Ο